Skip to main content
Log in

SODA: A framework for spatial observation data analysis

  • Published:
Distributed and Parallel Databases Aims and scope Submit manuscript

Abstract

Very large amounts of geospatial data are daily generated by many observation processes in different application domains. The amount of produced data is increasing due to the advances in the use of modern automatic sensing devices and also in the facilities available to promote crowdsourcing data collection initiatives. Spatial observation data includes both data of conventional entities and also samplings over multi-dimensional spaces. Existing observation data management solutions lack declarative specification of spatio-temporal analytics. On the other hand, current data management technologies miss observation data semantics and fail to integrate the management of entities and samplings in a single data modeling solution. The present paper presents the design of a framework that enables spatio-temporal declarative analysis over large warehouses of observation data. It integrates the management of entities and samplings within a simple data model based on the well known mathematical concept of function. Observation data semantics are incorporated into the model with appropriate metadata structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cox, S.: Geographic Information—Observations and Measurements. Open Geospatial Consortium (OGC) Abstract Specification Topic 20 and ISO 19156:2011(E) (2013). http://www.opengeospatial.org/standards/om. Accessed Jan 2014

  2. Open Geospatial Consortium (OGC): OpenGIS Sensor Model Language (SensorML) Implementation Specification (2007). http://www.opengeospatial.org/standards/sensorml. Accessed Jan 2014

  3. Bröring, A., Stasch, C., Echterhoff, J.: OGC Sensor Observation Service Interface Standard. Open Geospatial Consortium (OGC) (2012). http://www.opengeospatial.org/standards/sos. Accessed Jan 2014

  4. Bowers, S., Madin, J., Schildhauer, M.: A conceptual modeling framework for expressing observational data semantics. In: Q. Li, S. Spaccapietra, E. Yu, A. Oliv (eds.) Conceptual Modeling - ER 2008, Lecture Notes in Computer Science, vol. 5231, pp. 41–54. Springer, Berlin (2008). doi:10.1007/978-3-540-87877-3_5

  5. Compton, M., Barnaghi, P., Bermudez, L., Garca-Castro, R., Corcho, O., Cox, S., Graybeal, J., Hauswirth, M., Henson, C., Herzog, A., Huang, V., Janowicz, K., Kelsey, W.D., Phuoc, D.L., Lefort, L., Leggieri, M., Neuhaus, H., Nikolov, A., Page, K., Passant, A., Sheth, A., Taylor, K.: The SSN ontology of the W3C semantic sensor network incubator group. Web Semant. 17(0), 25–32 (2012). doi:10.1016/j.websem.2012.05.003

  6. Madin, J., Bowers, S., Schildhauer, M., Krivov, S., Pennington, D., Villa, F.: An ontology for describing and synthesizing ecological observation data. Ecol. Inf. 2(3), 279–296 (2007). Meta-information systems and ontologies. In: A Special Feature from the 5th International Conference on Ecological Informatics ISEI5, Santa Barbara, CA, Dec. 4–7, 2006—Novel Concepts of Ecological Data Management S.I. doi:10.1016/ j.ecoinf.2007.05.004

  7. Neteler, M., Mitasova, H.: Open Source GIS: A GRASS GIS Approach, 3rd edn. Springer, New York (2008)

    Book  Google Scholar 

  8. Galpin, I., Brenninkmeijer, C., Gray, A., Jabeen, F., Fernandes, A., Paton, N.: Snee: a query processor for wireless sensor networks. Distrib. Parallel Databases 29(1–2), 31–85 (2011). doi:10.1007/s10619-010-7074-3

    Article  Google Scholar 

  9. Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W.: Tinydb: an acquisitional query processing system for sensor networks. ACM Trans. Database Syst. 30(1), 122–173 (2005). doi:10.1145/1061318.1061322

    Article  Google Scholar 

  10. Güting, R.H.: Spatial Databases. John Wiley, Hoboken (2001). doi:10.1002/047134608X.W4317

    Google Scholar 

  11. Lorentzos, N.A., Viqueira, J.R.R.: Relational formalism for the management of spatial data. Comput. J. 49(1), 62–81 (2006). doi:10.1093/comjnl/bxh136

  12. International Organization for Standardization (ISO): Information technology—Database languages—SQL multimedia and application packages—Part 3: Spatial. ISO/IEC 13249–3:2011 (2011)

  13. Obe, R., Hsu, L.: PostGIS in Action. Manning, Stamford, CT (2011)

    Google Scholar 

  14. Mongodb: http://www.mongodb.org/ (2014). Accessed Jan 2014

  15. Idreos, S., Groffen, F.E., Nes, N.J., Manegold, S., Mullender, K.S., Kersten, M.L.: MonetDB: Two decades of research in column-oriented database architectures. IEEE Data Eng. Bull. 35(1), 40–45 (2012). http://oai.cwi.nl/oai/asset/19929/19929B.pdf. Accessed Jan 2014

  16. Baumann, P., Dehmel, A., Furtado, P., Ritsch, R., Widmann, N.: The multidimensional database system rasdaman. In: Proceedings of the 1998 ACM SIGMOD International Conference on Management of data, SIGMOD ’98, pp. 575–577. ACM, New York, NY (1998). doi:10.1145/276304.276386

  17. Brown, P.G.: Overview of scidb: large scale array storage, processing and analysis. In: Proceedings of the 2010 ACM SIGMOD International Conference on Management of data, SIGMOD ’10, pp. 963–968. ACM, New York, NY (2010). doi:10.1145/1807167.1807271

  18. Zhang, Y., Kersten, M.L., Manegold, S.: SciQL: array data processing inside an RDBMS. In: Proceedings of ACM SIGMOD International Conference on Management of Data 2013, pp. 1049–1052. ACM, New York, NY (2013). http://oai.cwi.nl/oai/asset/21401/21401A.pdf. Accessed Jan 2014

  19. Cugola, G., Margara, A.: Processing flows of information: from data stream to complex event processing. ACM Comput. Surv. 44(3), 15:1–15:62 (2012). doi:10.1145/2187671.2187677

    Article  Google Scholar 

  20. Arasu, A., Babu, S., Widom, J.: The cql continuous query language: semantic foundations and query execution. VLDB J. 15(2), 121–142 (2006). doi:10.1007/s00778-004-0147-z

    Article  Google Scholar 

  21. Jain, N., Mishra, S., Srinivasan, A., Gehrke, J., Widom, J., Balakrishnan, H., Çetintemel, U., Cherniack, M., Tibbetts, R., Zdonik, S.: Towards a streaming sql standard. Proc. VLDB Endow. 1(2), 1379–1390 (2008). http://dl.acm.org/citation.cfm?id=1454159.1454179. Accessed Jan 2014

  22. Apache cassandra: http://cassandra.apache.org/ (2014). Accessed Jan 2014

  23. Voltdb: http://voltdb.com/ (2014). Accessed Jan 2014

  24. Vertica: http://www.vertica.com/ (2014). Accessed Jan 2014

  25. Stonebraker, M., Abadi, D.J., Batkin, A., Chen, X., Cherniack, M., Ferreira, M., Lau, E., Lin, A., Madden, S., O’Neil, E., O’Neil, P., Rasin, A., Tran, N., Zdonik, S.: C-store: a column-oriented dbms. In: Proceedings of the 31st International Conference on Very Large Data Bases, VLDB ’05, pp. 553–564. VLDB Endowment (2005). http://dl.acm.org/citation.cfm?id=1083592.1083658. Accessed Jan 2014

  26. Schut, P.: OpenGIS Web Processing Service. Open Geospatial Consortium (OGC) (2007). http://www.opengeospatial.org/standards/wps. Accessed Jan 2014

  27. Cerveira Cordeiro, JaP, Câmara, G., Moura De Freitas, U., Almeida, F.: Yet another map algebra. Geoinformatica 13(2), 183–202 (2009). doi:10.1007/s10707-008-0045-4

    Article  Google Scholar 

  28. Date, C.J., Darwen, H., Darwen, H.: Temporal Data and the Relational Model: A Detailed Investigation into the Application of Interval and Relation Theory to the Problem of Temporal. Kaufmann series in data management systems, 1st edn. Morgan Kaufmann Publishers, Inc., San Francisco, CA (2002)

    Google Scholar 

  29. Snodgrass, R.T. (ed.): The TSQL2 Temporal Query Language. Kluwer, Philip Drive Norwell, MA (1995)

  30. Kulkarni, K., Michels, J.E.: Temporal features in SQL:2011. SIGMOD Rec. 41(3), 34–43 (2012). doi:10.1145/2380776.2380786

    Article  Google Scholar 

  31. Vaisman, A., Zimányi, E.: A multidimensional model representing continuous fields in spatial data warehouses. In: Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, GIS’09, pp. 168–177. ACM, New York, NY (2009). doi:10.1145/1653771.1653797

  32. Güting, R.H., Böhlen, M.H., Erwig, M., Jensen, C.S., Lorentzos, N.A., Schneider, M., Vazirgiannis, M.: A foundation for representing and querying moving objects. ACM Trans. Database Syst. 25(1), 1–42 (2000). doi:10.1145/352958.352963

    Article  Google Scholar 

  33. Viqueira, J., Lorentzos, N.: Sql extension for spatio-temporal data. VLDB J. 16(2), 179–200 (2007)

    Article  Google Scholar 

  34. Baumann, P., Holsten, S.: A comparative analysis of array models for databases. In: Kim, Th, Adeli, H., Cuzzocrea, A., Arslan, T., Zhang, Y., Ma, J., Chung, Ki, Mariyam, S., Song, X. (eds.) Database Theory and Application, Bio-Science and Bio-Technology, Communications in Computer and Information Science, pp. 80–89. Springer, Berlin (2011). doi:10.1007/978-3-642-27157-1_9

  35. Gray, P.M.D.: The Functional Approach to Data Management: : Modeling, Analyzing, and Integrating Heterogeneous Data. Springer, Berlin (2004)

    Book  Google Scholar 

  36. Sagan, H.: Space-Filling Curves. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  37. Abadi, D., Madden, S., Ferreira, M.: Integrating compression and execution in column-oriented database systems. In: Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data, SIGMOD ’06, pp. 671–682. ACM, New York, NY (2006). doi:10.1145/1142473.1142548

  38. Harizopoulos, S., Shkapenyuk, V., Ailamaki, A.: Qpipe: A simultaneously pipelined relational query engine. In: Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data, SIGMOD ’05, pp. 383–394. ACM, New York, NY (2005). doi:10.1145/1066157.1066201

  39. Abadi, D., Myers, D., DeWitt, D., Madden, S.: Materialization strategies in a column-oriented dbms. In: Proceedings of the IEEE 23rd International Conference on Data Engineering, ICDE 2007, pp. 466–475 (2007). doi:10.1109/ICDE.2007.367892

Download references

Acknowledgments

This work has been partially supported by the Spanish Ministry of Science and Innovation (TIN2010-21246-C02-02). The authors are also grateful to the reviewers, whose comments contributed to greatly improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José R. R. Viqueira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villarroya, S., Viqueira, J.R.R., Regueiro, M.A. et al. SODA: A framework for spatial observation data analysis. Distrib Parallel Databases 34, 65–99 (2016). https://doi.org/10.1007/s10619-014-7165-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10619-014-7165-7

Keywords

Navigation