Skip to main content
Log in

Physical design for distributed RFID-based supply chain management

  • Published:
Distributed and Parallel Databases Aims and scope Submit manuscript

Abstract

In consumer products market, supply chain management (SCM) is a complex and significant issue in the governance of organizations, people with their activities, technology, information and resources involved in transferring a product or service from a supplier to a final customer. To this aim, radio-frequency identification (RFID) is a promising wireless technology allowing to link an object with its “virtual counterpart”, i.e., its representation within information systems. In this context, a SCM system has to face a huge amount of RFID data, generated in the tracking of supply chain resources. In particular when RFID installations become larger and more physically distributed, efficient and scalable analysis of such data becomes a concern. Currently, state of the art approaches provide hard-coded solutions where the processing of RFID data occurs in a central location; as the amount and distribution of data grow, the workload requires significant consumption of resources, and quickly outpaces the capacity of a centralized processing server. In this paper, we consider the problem of distributing the RFID processing workload—possibly huge—proposing the physical design of a scalable and distributed system. Such system is built on top of a general framework for SCM, based on the first principles of linear algebra, in particular, on tensorial calculus. We consider challenges in instantiating such a system in large distributed settings, and design techniques for distributed real time query processing. Experimental results, using large traces, demonstrate the efficiency and scalability of our proposal with respect to competing approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Electronic Product Code: www.epcglobalinc.org.

  2. Here we consider unit vectors as vectors with only one component equal to \(1\), while the remaining being \(0\) (cf. Sect. 2). As we have not introduces a metric space, this nomenclature shall not confuse the reader with the usual definition of unit vectors as unit-norm ones.

References

  1. Abraham, R., Marsden, J.E., Ratiu, T.: Manifolds, Tensor Analysis, and Applications. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  2. Angeles, R.: RFID technologies: supply-chain applications and implementation issues. Inf. Syst. Manag. 22(1), 51–65 (2005)

    Article  MathSciNet  Google Scholar 

  3. Bader, B.W., Kolda, T.G.: Algorithm 862: MATLAB tensor classes for fast algorithm prototyping. ACM Trans. Math. Softw. 32(4), 635–653 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bader, B.W., Kolda, T.G.: Efficient MATLAB computations with sparse and factored tensors. SIAM J. Sci. Comput. 30(1), 205–231 (2007). doi:10.1137/060676489

    Article  MathSciNet  MATH  Google Scholar 

  5. Bai, Y., Wang, F., Liu, P., Zaniolo, C., Liu, S.: RFID data processing with a data stream query language. In: Proceedings of International Conference on Data Engineering (ICDE), pp. 1184–1193 (2007)

  6. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical Methods. Athena Scientific, Belmont (1997)

    Google Scholar 

  7. Blanas, S., Wu, K., Byna, S., Dong, B., Shoshani, A.: Parallel data analysis directly on scientific file formats. In: Proceedings of the International Conference on Management of Data (SIGMOD), pp. 385–396 (2014)

  8. Bondy, A., Murty, U.S.R.: Graph Theory. Graduate Texts in Mathematics. Springer, Berlin (2010)

    Google Scholar 

  9. Buluç, A., Fineman, J.T., Frigo, M., Gilbert, J.R., Leiserson, C.E.: Parallel sparse matrix-vector and matrix-transpose-vector multiplication using compressed sparse blocks. In: Proceedings of the Symposium on Parallelism in Algorithms and Architectures (2009)

  10. Cao, Z., Sutton, C., Diao, Y., Shenoy, P.J.: Distributed inference and query processing for RFID tracking and monitoring. PVLDB 4(5), 326–337 (2011)

    Google Scholar 

  11. Ciesielski, K.: Set Theory for the Working Mathematician. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  12. Davis, T.A.: Direct Methods for Sparse Linear Systems. SIAM, Philadelphia (2006)

    Book  MATH  Google Scholar 

  13. De Virgilio, R., Milicchio, F.: RFID data analysis using tensor calculus for supply chain management. In: ACM Conference on Information and Knowledge Management. ACM, Glasgow (2011)

  14. De Virgilio, R., Milicchio, F.: RFID data management and analysis via tensor calculus. Trans. Large Scale Data Knowl. Centered Syst. 7, 1–30 (2012)

    Google Scholar 

  15. Derakhshan, R., Orlowska, M.E., Li, X.: RFID data management: challenges and opportunities. In: Proceedings of the IEEE International Conference on RFID (RFID), pp. 175–182 (2007)

  16. Duff, I.S., Erisman, A.M., Reid, J.K.: Direct Methods for Sparse Matrices. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (1989)

    Google Scholar 

  17. Dutta, K., VanderMeer, D.E., Ramamritham, K.: Managing RFID events in large-scale distributed RFID infrastructures. Inf. Technol. Manag. 12(3), 253–272 (2011)

    Article  Google Scholar 

  18. Enderton, H.B.: Elements of Set Theory. Academic Press, New York (1977)

    MATH  Google Scholar 

  19. Folk, M., Heber, G., Koziol, Q., Pourmal, E., Robinson, D.: An overview of the HDF5 technology suite and its applications. In: Array Databases Workshop, EDBT/ICDT 2011 Joint Conference. Uppsala (2011)

  20. Gonzalez, H., Han, J., Li, X., Klabjan, D.: Warehousing and analyzing massive RFID data sets. In: Proceedings of the 22nd International Conference on Data Engineering (ICDE), p. 83 (2006)

  21. Heber, G.: HDF5 meets, challenges, and complements the DBMS. In: Extremely Large Databases. Menlo Park (2011)

  22. Heinbockel, J.H.: Introduction to Tensor Calculus and Continuum Mechanics. Trafford Publishing, Victoria (2001)

    Google Scholar 

  23. Hoffman, M., Kunze, R.: Linear Algebra. Prentice Hall, Englewood Cliffs (1971)

    MATH  Google Scholar 

  24. Howison, M., Koziol, Q., Knaak, D., Mainzer, J., Shalf, J.: Tuning HDF5 for lustre file systems. In: Workshop on Interfaces and Abstractions for Scientific Storage, IASDS10. Heraklion, Crete (2010)

  25. ISO/IEC 14882:2011: Information Technology—Programming Languages—C++. International Organization for Standardization, Geneva (2011)

  26. Iverson, K.: A programming language. In: Proceedings of the AFIPS Spring Joint Computer Conference (1962)

  27. Jancewicz, B.: The extended Grassmann algebra of \({\mathbb{R}}^3\). In: Clifford (Geometric) Algebras with Applications to Physics, Mathematics, and Engineering. Birkhäuser, Boston (1996)

  28. Jeffery, S.R., Alonso, G., Franklin, M.J., Hong, W., Widom, J.: A pipelined framework for online cleaning of sensor data streams. In: Proceedings of the 22nd International Conference on Data Engineering (ICDE), p. 140 (2006)

  29. Jeffery, S.R., Garofalakis, M.N., Franklin, M.J.: Adaptive cleaning for RFID data streams. In: Proceedings of the 32nd International Conference on Very Large Data Bases (VLDB), pp. 163–174 (2006)

  30. Keller, T., Thiesse, F., Fleisch, E.: Classification models for RFID-based real-time detection of process events in the supply chain: an empirical study. ACM Trans. Manag. Inf. Syst. 5(4), 25 (2014)

    Article  Google Scholar 

  31. Kim, Y., Park, J.: A lifecycle data management system based on RFID technology of EPC class1 gen2 v2. In: Innovative and Knowledge-Based Production Management in a Global-Local World—IFIP WG 5.7 International Conference (APMS), pp. 294–301 (2014)

  32. Kleene, S.C.: Introduction to Metamathematics. Van Nostrand Rheinhold, New York (1952)

    MATH  Google Scholar 

  33. Kunen, K.: Set Theory. College Publications, London (2012)

    Google Scholar 

  34. Lee, C.H., Chung, C.W.: Efficient storage scheme and query processing for supply chain management using RFID. In: Proceedings of the International Conference on Management of Data (SIGMOD), pp. 291–302 (2008)

  35. Lin, C.Y., Liu, J.S., Chung, Y.C., Society, I.C.: Efficient representation scheme for multidimensional array operations. IEEE Trans. Comput. 51, 327–345 (2002)

    Article  MathSciNet  Google Scholar 

  36. Lin, C.Y., Chung, Y.C., Liu, J.S.: Efficient data compression methods for multidimensional sparse array operations based on the EKMR scheme. IEEE Trans. Comput. 52, 1640–1646 (2003)

    Article  Google Scholar 

  37. Margo, M.W., Kovatch, P.A., Andrews, P., Banister, B.: An analysis of state-of-the-art parallel file systems for Linux. In: 5th International Conference on Linux Clusters: The HPC Revolution 2004. Austin (2004)

  38. Millard, B.L., Niepel, M., Menden, M.P., Muhlich, J.L., Sorger, P.K.: Adaptive informatics for multifactorial and high-content biological data. Nat. Methods 8(6), 487–492 (2011)

    Article  Google Scholar 

  39. Osterby, O., Zlatev, Z.: Direct Methods for Sparse Matrices. Lecture Notes in Computer Science. Springer, Berlin (1983)

    Google Scholar 

  40. Sears, M.P., Bader, B.W., Kolda, T.G.: Parallel implementation of tensor decompositions for large data analysis. In: Minisymposium on High Performance Computing on Massive Real-World Graphs (SIAM AN09) (2009)

  41. Virgilio, R.D., Milicchio, F.: RFID data monitoring and cleaning using tensor calculus. In: 14th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU), pp. 539–549 (2012)

  42. Wang, F., Liu, S., Liu, P., Bai, Y.: Bridging physical and virtual worlds: complex event processing for RFID data streams. In: 10th International Conference on Extending Database Technology (EDBT), pp. 588–607 (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto De Virgilio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Virgilio, R., Milicchio, F. Physical design for distributed RFID-based supply chain management. Distrib Parallel Databases 34, 3–32 (2016). https://doi.org/10.1007/s10619-015-7178-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10619-015-7178-x

Keywords

Navigation