Skip to main content
Log in

On Ovoids of Parabolic Quadrics

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

It is known that every ovoid of the parabolic quadric Q(4, q), q=ph, p prime, intersects every three-dimensional elliptic quadric in 1 mod p points. We present a new approach which gives us a second proof of this result and, in the case when p=2, allows us to prove that every ovoid of Q(4, q) either intersects all the three-dimensional elliptic quadrics in 1 mod 4 points or intersects all the three-dimensional elliptic quadrics in 3 mod 4 points.

We also prove that every ovoid of Q(4, q), q prime, is an elliptic quadric. This theorem has several applications, one of which is the non-existence of ovoids of Q(6, q), q prime, q>3.

We conclude with a 1 mod p result for ovoids of Q(6, q), q=ph, p prime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Bagchi N. S. Narasimha Sastry (1987) ArticleTitleEven order inversive planes, generalized quadrangles and codes Geom. Dedicata 22 137–147 Occurrence Handle88b:51006

    MathSciNet  Google Scholar 

  2. S. Ball (2004) ArticleTitleOn ovoids of O(5,q) Adv. Geom. 4 1–7 Occurrence Handle2155360 Occurrence Handle1039.51004

    MathSciNet  MATH  Google Scholar 

  3. A. Blokhuis and F. Mazzocca, On maximal sets of nuclei in PG(2,q) and quasi-odd sets in AG(2,q), In Advances in finite geometries and designs (Chelwood Gate, 1990), Oxford Univ. Press, New York, (1991) pp. 27–34.

  4. A. Blokhuis and H. Wilbrink, unpublished manuscript.

  5. L. Brouns J. A. Thas H. Maldeghem ParticleVan (2002) ArticleTitleA characterization of Q(5,q) using one subquadrangle Q(4,q) Eur. J. Combin. 23 163–177

    Google Scholar 

  6. M. R. Brown (2002) ArticleTitleA characterisation of the generalized quadrangle Q(5,q) using cohomology J. Algebraic Combin. 15 107–125 Occurrence Handle10.1023/A:1013812619953 Occurrence Handle2003e:51005 Occurrence Handle0998.51005

    Article  MathSciNet  MATH  Google Scholar 

  7. R. H. Bruck, Construction problems of finite projective planes, In Combinatorial Mathematics and its Applications, Proc. Conf., Univ. North Carolina, Chapel Hill, N.C., 1967, Univ. North Carolina Press, Chapel Hill, N.C., (1969), pp. 426–514.

  8. P. J. Cameron, Projective and Polar Spaces (QMW Maths Notes 13, 1991), http://www.maths.qmw.ac.uk/~pjc/pps.

  9. T. Czerwinski (1991) ArticleTitleThe collineation groups of the translation planes of order 25 Geom. Dedicata 39 125–137 Occurrence Handle10.1007/BF00182289 Occurrence Handle92i:51013 Occurrence Handle0733.51002

    Article  MathSciNet  MATH  Google Scholar 

  10. T. Czerwinski D. Oakden (1992) ArticleTitleThe translation planes of order twenty-five J. Combin. Theory Ser. A 59 193–217 Occurrence Handle10.1016/0097-3165(92)90065-3 Occurrence Handle93c:51009

    Article  MathSciNet  Google Scholar 

  11. E. H. Davis, Translation planes of order 25 with nontrivial XOY perspectivities, In Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing, Florida Atlantic Univ., Boca Raton, Fla., 1979, Winnipeg, Man., 1979. Utilitas Math., pp. 341–348.

  12. J. Beule ParticleDe K. Metsch (2004) ArticleTitleSmall point sets that meet all generators of Q(2n,q), p> 3 prime J. Combin. Theory Ser. A 106 327–333 Occurrence Handle2005c:51012

    MathSciNet  Google Scholar 

  13. J. De Beule and L. Storme, The smallest minimal blocking sets of Q(2n,q) for small odd q, Discrete Math., to appear.

  14. J. Eisfeld L. Storme P. Sziklai (2001) ArticleTitleMinimal covers of the Klein quadric J. Combin. Theory Ser. A 95 145–157 Occurrence Handle10.1006/jcta.2000.3157 Occurrence Handle2002d:51008

    Article  MathSciNet  Google Scholar 

  15. P. Govaerts L. Storme H. Maldeghem ParticleVan (2002) ArticleTitleOn a particular class of minihypers and its applications. III Applications. Eur. J. Combin. 23 659–672

    Google Scholar 

  16. A. Gunawardena G. E. Moorhouse (1997) ArticleTitleThe non-existence of ovoids in O9(q) Eur. J. Combin. 18 171–173 Occurrence Handle98d:51008

    MathSciNet  Google Scholar 

  17. J. W. P. Hirschfeld J. A. Thas (1991) General Galois Geometries The Clarendon Press, Oxford University Press New York

    Google Scholar 

  18. W. M. Kantor (1982) ArticleTitleOvoids and translation planes Can. J. Math. 34 1195–1207 Occurrence Handle84b:51019 Occurrence Handle0467.51004

    MathSciNet  MATH  Google Scholar 

  19. L. Lovász and T. Szőnyi, Multiple blocking sets and algebraic curves, abstract from Finite Geometry and Combinatorics, Third International Conference at Deinze (Belgium), May 18–24, (1997).

  20. R. Mathon G. F. Royle (1995) ArticleTitleThe translation planes of order 49 Des. Codes Cryptogr. 5 57–72 Occurrence Handle10.1007/BF01388504 Occurrence Handle95j:51016

    Article  MathSciNet  Google Scholar 

  21. D. J. Oakden, Spreads in three-dimensional projective space. Doctoral thesis, University of Toronto, (1973).

  22. C. M. O’Keefe J. A. Thas (1995) ArticleTitleOvoids of the quadric Q(2n,q) Eur. J. Combin. 16 87–92 Occurrence Handle96a:51004

    MathSciNet  Google Scholar 

  23. S. E. Payne J. A. Thas (1984) Finite Generalized Quadrangles Pitman Boston, Mass

    Google Scholar 

  24. T. Penttila B. Williams (2000) ArticleTitleOvoids of parabolic spaces Geom. Dedicata 82 1–19 Occurrence Handle10.1023/A:1005244202633 Occurrence Handle2001i:51005

    Article  MathSciNet  Google Scholar 

  25. T. Szőnyi (1997) ArticleTitleBlocking sets in Desarguesian affine and projective planes Finite Fields Appl. 3 187–202 Occurrence Handle98h:51019

    MathSciNet  Google Scholar 

  26. T. Szőnyi Zs. Weiner (2001) ArticleTitleSmall blocking sets in higher dimensions J. Combin. Theory Ser. A 95 88–101 Occurrence Handle2002g:05046

    MathSciNet  Google Scholar 

  27. J. A. Thas (1980) ArticleTitlePolar spaces, generalized hexagons and perfect codes J. Combin. Theory Ser. A 29 87–93 Occurrence Handle83e:51018 Occurrence Handle0444.05027

    MathSciNet  MATH  Google Scholar 

  28. J. A. Thas (1981) ArticleTitleOvoids and spreads of finite classical polar spaces Geom. Dedicata 10 135–143 Occurrence Handle10.1007/BF01447417 Occurrence Handle82g:05031 Occurrence Handle0458.51010

    Article  MathSciNet  MATH  Google Scholar 

  29. J. A. Thas (2001). Ovoids, spreads and m-systems of finite classical polar spaces, In Surveys in combinatorics, 2001 (Sussex), Cambridge Univ. Press, Cambridge, 2001, pp. 241–267.

  30. J. A. Thas S. E. Payne (1994) ArticleTitleSpreads and ovoids in finite generalized quadrangles Geom. Dedicata 52 227–253 Occurrence Handle10.1007/BF01278475 Occurrence Handle95m:51005

    Article  MathSciNet  Google Scholar 

  31. J. Tits (1962) ArticleTitleOvoides et Groupes de Suzuki Arch. Math. XIII 187–198 Occurrence Handle25 #3990

    MathSciNet  Google Scholar 

  32. H. Maldeghem ParticleVan (1998) Generalized Polygons Birkhäuser Verlag Basel

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Govaerts.

Additional information

Communicated by: D. Jungnickel

AMS Classification:51E12, 51E20

The first author acknowledges the support of the Ministerio de Ciencia y Tecnología, España.

The third author thanks the Fund for Scientific Research – Flanders (Belgium) for a Research Grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ball, S., Govaerts, P. & Storme, L. On Ovoids of Parabolic Quadrics. Des Codes Crypt 38, 131–145 (2006). https://doi.org/10.1007/s10623-005-5666-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-005-5666-0

Keywords

Navigation