Skip to main content
Log in

A lower bound for the minimum weight of the dual 7-ary code of a projective plane of order 49

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Existing bounds on the minimum weight d of the dual 7-ary code of a projective plane of order 49 show that this must be in the range 76 ≤ d ≤ 98. We use combinatorial arguments to improve this range to 88 ≤ d ≤ 98, noting that the upper bound can be taken to be 91 if the plane has a Baer subplane, as in the desarguesian case. A brief survey of known results for the minimum weight of the dual codes of finite projective planes is also included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Assmus EF Jr, Key JD (1992) Designs and their codes. Cambridge University Press, Cambridge. Cambridge Tracts in Mathematics, Vol. 103 (Second printing with corrections, 1993)

  2. Blokhuis A, Szőnyi T and Weiner Zs (2003). On sets without tangents in Galois planes of even order. Des Codes Cryptogr 29: 91–98

    Article  MATH  MathSciNet  Google Scholar 

  3. Clark KL (2000) Improved bounds for the minimum weight of the dual codes of some classes of designs. PhD thesis, Clemson University

  4. Clark KL and Key JD (1999). Geometric codes over fields of odd prime power order. Congr Numer 137: 177–186

    MATH  MathSciNet  Google Scholar 

  5. Clark KL, Key JD and de Resmini MJ (2002). Dual codes of translation planes. Eur J Combin 23: 529–538

    Article  MATH  MathSciNet  Google Scholar 

  6. Clark KL, Hatfield LD, Key JD and Ward HN (2003). Dual codes of projective planes of order 25. Adv Geom 3: 140–152

    MathSciNet  Google Scholar 

  7. Czerwinski T and Oakden D (1992). The translation planes of order twenty-five. J Combin Theory Ser A 59: 193–217

    Article  MATH  MathSciNet  Google Scholar 

  8. Figueroa R (1982). A family of not (v,ℓ)-transitive projective planes of order q 3, q ≢ 1 (mod 3) and q >  2. Math Z 181: 471–479

    Article  MATH  MathSciNet  Google Scholar 

  9. Gács A and Weiner Zs (2003). On (q + t,t)-arcs of type (0,2,t). Des Codes Cryptogr 29: 131–139

    Article  MATH  MathSciNet  Google Scholar 

  10. Hughes DR and Piper FC (1973). Projective planes. Graduate Texts in Mathematics 6. Springer-Verlag, New York

    Google Scholar 

  11. Hughes DR and Piper FC (1985). Design theory. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  12. Key JD and de Resmini MJ (1998). Small sets of even type and codewords. J Geom 61: 83–104

    Article  MATH  MathSciNet  Google Scholar 

  13. Key JD and de Resmini MJ (2001). Ternary dual codes of the planes of order nine. J Statist Plan Inference 95: 229–236

    Article  MATH  MathSciNet  Google Scholar 

  14. Key JD and de Resmini MJ (2003). An upper bound for the minimum weight of dual codes of Figueroa planes. J Geom 77: 102–107

    Article  MATH  MathSciNet  Google Scholar 

  15. Korchmáros G and Mazzocca F (1990). On (q + t)-arcs of type (0,2,t) in a desarguesian plane of order q. Math Proc Cambridge Philos Soc 108: 445–459

    Article  MATH  MathSciNet  Google Scholar 

  16. Lam CWH, Kolesova G and Thiel L (1991). A computer search for finite projective planes of order 9. Discrete Math 92: 187–195

    Article  MATH  MathSciNet  Google Scholar 

  17. Limbupasiriporn J (2005) Partial permutation decoding for codes from designs and finite geometries. PhD Thesis, Clemson University

  18. Mathon R and Royle GF (1995). The translation planes of order 49. Des Codes Cryptogr 5: 57–72

    Article  MATH  MathSciNet  Google Scholar 

  19. Neumann H (1955). On some finite non-desarguesian planes. Arch Math VI: 36–40

    Google Scholar 

  20. Ngwane FF (2006) Bounds for the minimum weight of dual codes from projective planes. Master’s Project, Clemson University

  21. de Resmini MJ and Hamilton N (1998). Hyperovals and unitals in Figueroa planes. Eur J Combin 19: 215–220

    Article  MATH  MathSciNet  Google Scholar 

  22. Room TG and Kirkpatrick PB (1971). Miniquaternion Geometry: an introduction to the study of projective planes. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  23. Sachar H (1979). The F p span of the incidence matrix of a finite projective plane. Geom Dedicata 8: 407–415

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer D. Key.

Additional information

Dedicated to Dan Hughes on the occasion of his 80th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Key, J.D., Ngwane, F.F. A lower bound for the minimum weight of the dual 7-ary code of a projective plane of order 49. Des. Codes Cryptogr. 44, 133–142 (2007). https://doi.org/10.1007/s10623-007-9072-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-007-9072-7

Keywords

AMS Classifications

Navigation