Skip to main content
Log in

On perfect p-ary codes of length p + 1

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Let p be a prime number and assume p ≥ 5. We will use a result of L. Redéi to prove, that every perfect 1-error correcting code C of length p + 1 over an alphabet of cardinality p, such that C has a rank equal to p and a kernel of dimension p − 2, will be equivalent to some Hamming code H. Further, C can be obtained from H, by the permutation of the symbols, in just one coordinate position.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Best M.R. (1983). Perfect codes hardly exist. IEEE Trans. Inform. Theory 29(3): 349–351

    Article  MATH  MathSciNet  Google Scholar 

  2. Blokhuis A., Lam C.W.H. (1984). More coverings by rook domains. J. Combin. Theory Ser. A 36: 240–244

    Article  MATH  MathSciNet  Google Scholar 

  3. Etzion T. (1996). Nonequivalent q-ary perfect codes. SIAM J. Discrete Math. 9(3): 413–423

    Article  MATH  MathSciNet  Google Scholar 

  4. Golay M.J.E.: Notes on digital coding. Proc. IRE 37 (1949), Correspondence 657.

  5. Hamming, Error detecting and error correcting codes. Bell Syst. Tech. J. 29, 147–160 (1950).

  6. Heden O. (1975). A generalised Lloyd Theorem and mixed perfect codes. Math. Scand. 37: 13–26

    MATH  MathSciNet  Google Scholar 

  7. Heden O.: Perfect codes from the dual point of view I. submitted to Discrete Math.

  8. Heden O. (2006). A full rank perfect code of length 31. Des. Codes Crypthogr. 38, 125–129

    Article  MATH  MathSciNet  Google Scholar 

  9. Lang S. (1965). Algebra. Addison-Wesley Publishing Company, Reading

    MATH  Google Scholar 

  10. Leontiev V.K., Zinoviev V.A. (1973). Nonexistence of perfect codes over galois fields. Problems Inform. Theory 2(2): 123–132

    Google Scholar 

  11. Lindström B. (1969). On group and nongroup perfect codes in q symbols. Math. Scand. 25: 149–158

    MATH  Google Scholar 

  12. Phelps K.T. (1983). A general product construction of perfect codes. SIAM J. Algebra Discrete Method. 4, 224–228

    MathSciNet  Google Scholar 

  13. Phelps K.T., Villanueva M. (2002). Ranks of q-ary 1-perfect codes. Des. Codes Cryptogr. 27(1–2): 139–144

    Article  MATH  MathSciNet  Google Scholar 

  14. Phelps K.T., Rifà J., Villanueva M. (2005). Kernels and p-kernels of p r-ary 1-perfect codes. Des. Codes Cryptogr. 37(2): 243–261

    Article  MathSciNet  Google Scholar 

  15. Rédei L.: Lückenhafte Polynome über endlischen Körpern. Birkhäuser verlag Basel und Stuttgart (1970).

  16. Schönheim J. (1968). On linear and nonlinear single-error-correcting q-ary perfect codes. Inform. Control 12: 23–26

    Article  MATH  Google Scholar 

  17. Solov’eva F.I.: On Perfect Codes and Related Topics. Com2Mac Lecture Note Series 13, Pohang (2004).

  18. Tietäväinen A. (1973). On the nonexistence of perfect codes over finite fields. SIAM J. Appl. Math. 24, 88–96

    Article  MathSciNet  Google Scholar 

  19. van der Waerden B.L. (1966). Algebra, Erster Teil, Siebte Auflage der Modernen Algebra. Springer-Verlag, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olof Heden.

Additional information

Communicated by V.A. Zinoviev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heden, O. On perfect p-ary codes of length p + 1. Des. Codes Cryptogr. 46, 45–56 (2008). https://doi.org/10.1007/s10623-007-9133-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-007-9133-y

Keywords

AMS Classification

Navigation