Skip to main content
Log in

On proper secrets, (t, k)-bases and linear codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

This paper contains three parts where each part triggered and motivated the subsequent one. In the first part (Proper Secrets) we study the Shamir’s “k-out-of-n” threshold secret sharing scheme. In that scheme, the dealer generates a random polynomial of degree k−1 whose free coefficient is the secret and the private shares are point values of that polynomial. We show that the secret may, equivalently, be chosen as any other point value of the polynomial (including the point at infinity), but, on the other hand, setting the secret to be any other linear combination of the polynomial coefficients may result in an imperfect scheme. In the second part ((t, k)-bases) we define, for every pair of integers t and k such that 1 ≤ t ≤ k−1, the concepts of (t, k)-spanning sets, (t, k)-independent sets and (t, k)-bases as generalizations of the usual concepts of spanning sets, independent sets and bases in a finite-dimensional vector space. We study the relations between those notions and derive upper and lower bounds for the size of such sets. In the third part (Linear Codes) we show the relations between those notions and linear codes. Our main notion of a (t, k)-base bridges between two well-known structures: (1, k)-bases are just projective geometries, while (k−1, k)-bases correspond to maximal MDS-codes. We show how the properties of (t, k)-independence and (t, k)-spanning relate to the notions of minimum distance and covering radius of linear codes and how our results regarding the size of such sets relate to known bounds in coding theory. We conclude by comparing between the notions that we introduce here and some well known objects from projective geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlswede R., Cai N., Li S.Y.R., Yeung R.W.: Network information flow. IEEE Trans. Inform. Theory IT- 46, 1204–1216 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ben Yaakov J., Tassa T.: Oblivious evaluation of multivariate polynomials (submitted).

  3. de Boor C., Dyn N., Ron A.: Polynomial interpolation to data on flats in \({\mathbb{R}^d}\) . J. Approx. Theory 105, 313–343 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bose R.C.: Mathematical theorey of the symmetrical factorial design. Sankhyā 8, 107–166 (1947)

    MATH  Google Scholar 

  5. Bose R.C.: On some connections between the design of experiments and information theory. Bull. Inst. Int. Stat. 38, 257–271 (1961)

    MATH  Google Scholar 

  6. Bush K.A.: Orthogonal arrays of index unity. Ann. Math. Stat. 23, 426–434 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  7. Casse L.R.A.: A solution to Beniamino Segre’s ‘Problem I r,q ’ for q even. Atti. Accad. Naz. Lincei Rend. 46, 13–20 (1969)

    MATH  MathSciNet  Google Scholar 

  8. Damelin S.B., Michalski G., Mullen G.L., Stone D.: The number of linearly independent binary vectors with applications to the construction of hypercubes and orthogonal arrays, pseudo (t, m, s)-nets and linear codes. Monatsh. Math. 141, 277–288 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Damelin S.B., Michalski G., Mullen G.L.: The cardinality of sets of k-independent vectors over finite fields. Monatsh. Math. 150, 289–295 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dodis Y.: Space-time tradeoffs for graph properties. Master thesis, MIT. http://theory.lcs.mit.edu/yevgen/ps/thesis.ps (1998).

  11. Gulati B.R.: On maximal (k, t)-sets. Ann. Inst. Stat. Math. 23, 527–529 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hill R.: A First Course in Coding Theory, Oxford Applied Mathematics and Computing Science Series. Clarendon Press, Oxford (2002)

    Google Scholar 

  13. Hirschfeld J.W.P.: Maximum Sets in Finite Projective Spaces, Surveys in Combinatorics, London Mathematical Society Lecture Note Series, vol. 82, pp. 55–76. Cambridge University Press, Cambridge (1983).

  14. Hirschfeld J.W.P., Storme L.: The packing problem in statistics, coding theory and finite projective spaces. J. Stat. Plan. Inference 72, 355–380 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hirschfeld J.W.P., Storme L.: The Packing Problem in Statistics, Coding Theory and Finite Projective Spaces: Update 2001, in Finite Geometries, Developments in Mathematics, pp. 201–246. Kluwer, Boston (2001).

  16. Hirschfeld J.W.P., Thas T.A.: General Galois Geometries. Oxford University Press, Oxford (1991)

    MATH  Google Scholar 

  17. Jaggi S., Sanders P., Chou P.A., Effros M., Egner S., Jain K., Tolhuizen L.M.G.M.: Polynomial time algorithms for multicast network code construction. IEEE Trans. Inform. Theory 51, 1973–1982 (2005)

    Article  MathSciNet  Google Scholar 

  18. Jurick R.R.: An algorithm for determining the largest maximally independent set of vectors from an r-dimensional space over a Galois field of n elements. Technical Report ASD-TR-68-40. Air Force Systems Command. Wright-Patterson Air Force Base, Ohio.

  19. Kogan N., Tassa T.: Improved efficiency for revocation schemes via Newton interpolation. ACM Trans. Inf. Syst. Secur. 9, 461–486 (2006)

    Article  Google Scholar 

  20. Macdonald I.G.: Symmetric Functions and Hall Polynomials. Oxford (1995).

  21. MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. North-Holland Mathematical Library 16 (1977).

  22. Maneri C., Silverman R.: A vector space packing problem. J. Algebra 4, 321–330 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  23. Qvist B.: Some remarks concerning curves of the second degree in a finite plane. Ann. Acad. Sci. Fenn. Ser. A 134 (1952).

  24. Rao C.R.: Factorial experiments derivable from combinatorial arrangements of arrays. J. R. Stat. Soc. 9, 128–139 (1947) (supplement).

    Google Scholar 

  25. Segre B.: Curve razionali normali e k-archi negli spazi finiti. Ann. Mat. Pura Appl. 39, 357–379 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  26. Segre B.: Lectures on Modern Geometry. Cremonese, Rome (1961)

    MATH  Google Scholar 

  27. Seiden E.: A theorem in finite projective geometry and an application to statistics. Proc. Am. Math. Soc. 1 282–286 (1950).

    Google Scholar 

  28. Shamir A.: How to share a secret. Commun. ACM 22 612–613 (1979).

    Google Scholar 

  29. Singleton R.C.: Maximum distance q-ary codes. IEEE Trans. Inform. Theory 10, 16–118 (1964)

    Article  MathSciNet  Google Scholar 

  30. Stewart I.N., Tall D.O.: Algebraic Number Theory, 2nd edn, pp. 104–107. Chapman and Hall, New York (1987)

    MATH  Google Scholar 

  31. Tallini G.: Le geometrie di Galois e le loro applicazioni alla statistica e alla teoria delle informazioni. Rend. Mat. e Appl. 19, 379–400 (1960)

    MathSciNet  Google Scholar 

  32. Thas J.A.: Normal rational curves and k-arcs in Galois spaces. Rend. Mat. 1, 331–334 (1968)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamir Tassa.

Additional information

Communicated by P. Wild.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tassa, T., Villar, J.L. On proper secrets, (t, k)-bases and linear codes. Des. Codes Cryptogr. 52, 129–154 (2009). https://doi.org/10.1007/s10623-009-9272-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-009-9272-4

Keywords

Mathematics Subject Classification (2000)

Navigation