Skip to main content
Log in

42-arcs in PG(2, q) left invariant by PSL(2, 7)

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

For an odd prime p ≠ 7, let q be a power of p such that \({q^3\equiv1 \pmod 7}\) . It is known that the desarguesian projective plane PG(2, q) of order q has a unique conjugacy class of projectivity groups isomorphic to PSL(2, 7). For such a projective group Γ, we investigate the geometric properties of the (unique) Γ-orbit Ω of size 42 such that the 1-point stabilizer of Γ in Ω is a cyclic group of order 4. We present a computational approach to prove that Ω is a 42-arc provided that q ≥ 53 and q ≠ 373, 116, 56, 36. We discuss the case q = 53 in more detail showing the completeness of Ω for q = 53.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abatangelo V.: Doubly transitive (n + 2)-arcs in projective planes of even order n. J. Combin. Theory Ser. 42, 1–8 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  2. Behr H., Mennicke J.: A presentation of the groups PSL(2, p). Canad. J. Math. 20, 1432–1438 (1968)

    Article  MathSciNet  Google Scholar 

  3. Cannon J.J., Bosma W. (eds.): Handbook of Magma Functions, Edition 2.13 (2006).

  4. Chao J.M., Kaneta H.: A complete 24-arc in PG(2, 29) with the autom orphism group PSL(2, 7). Rend. Mat. Appl. 16, 537–544 (1996)

    MathSciNet  MATH  Google Scholar 

  5. Cossidente A., Korchmáros G.: The Hermitian function field arising from a cyclic arc in a Galois plane. Geometry, Combinatorial Designs and Related Structures. London Math. Soc. Lecture Note Ser. 245, Cambridge University Press, Cambridge, 63–68 (1997).

  6. Cossidente A., Korchmáros G.: The algebraic envelope associated to a complete arc. Rend. Circ. Mat. Palermo Suppl. 51, 9–24 (1998)

    Google Scholar 

  7. de Resmini M., Ghinelli D., Jungnickel D.: Arcs and ovals from abelian groups. Des. Codes Cryptogr. 26(1–3), 213–228 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Giulietti M.: Envelopes of k-arcs in projective planes over finite fields and Gröbner bases. Rend. Circ. Mat. Palermo 48, 191–200 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Giulietti M.: Algebraic curves over finite fields and MAGMA. Ital. J. Pure Appl. Math. 8, 19–32 (2000)

    MathSciNet  MATH  Google Scholar 

  10. Gordon C., Killgrove R.: Representative arcs in field planes of prime order. In: Proceedings of the Twentieth Southeastern Conference on Combinatorics, Graph Theory, and Computing (1989), vol. 71, pp. 73–85 (1990).

  11. Hirschfeld J.W.P.: Projective Geometries over Finite Fields, 2nd edn. Oxford University Press, Oxford (1998)

    MATH  Google Scholar 

  12. Hirschfeld J.W.P., Korchmáros G.: On the embedding of an arc into a conic in a finite plane. Finite Fields Appl. 2, 274–292 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hirschfeld J.W.P., Korchmáros G.: On the number of rational points on an algebraic curve over a finite field. Bull. Belg. Math. Soc. Simon Stevin 5, 313–340 (1998)

    MathSciNet  MATH  Google Scholar 

  14. Hirschfeld J.W.P., Korchmáros G.: Arcs and curves over a finite field. Finite Fields Appl. 5, 393–408 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hirschfeld J.W.P., Korchmáros G., Torres F.: Algebraic Curves Over a Finite Field. Princeton University Press, Princeton (2008)

    MATH  Google Scholar 

  16. Kaneta H., Marcugini S., Pambianco F.: On arcs and curves with many automorphisms. Mediterr. J. Math. 2, 71–102 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Korchmáros G.: Collineation groups transitive on the points of an oval [(q + 2)-arc] of S 2,q for q even. Atti Sem. Mat. Fis. Univ. Modena 27, 89–105 (1978)

    MathSciNet  MATH  Google Scholar 

  18. Korchmáros G., Pace N.: Infinite family of large complete arcs in PG(2, q n), with q odd and n > 1 odd. Des. Codes Cryptogr. 55, 285–296 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Korchmáros G., Sonnino A.: On arcs sharing the maximum number of points with ovals in cyclic affine planes of odd order. J. Combin. Des. 18, 25–47 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Pellegrino G.: Properties and applications of the axial collineation group on a conic of an odd-order Galois plane. Rend. Mat. Appl. 11, 591–616 (1991)

    MathSciNet  MATH  Google Scholar 

  21. Segre B.: Ovals in a finite projective plane. Canad. J. Math. 7, 414–416 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  22. Segre B.: Introduction to Galois geometries, edited by J.W.P. Hirschfeld. Atti Accad. Naz. Lincei Mem. 8, 133–236 (1967)

    MathSciNet  MATH  Google Scholar 

  23. Ueberberg J.: Projective planes and dihedral groups. Discrete Math. 174, 337–345 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gábor Korchmáros.

Additional information

This is one of several papers published together in Designs, Codes and Cryptography on the special topic: “Geometry, Combinatorial Designs & Cryptology”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Indaco, L., Korchmáros, G. 42-arcs in PG(2, q) left invariant by PSL(2, 7). Des. Codes Cryptogr. 64, 33–46 (2012). https://doi.org/10.1007/s10623-011-9532-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-011-9532-y

Keywords

Mathematics Subject Classification (2000)

Navigation