Skip to main content
Log in

A Hamada type characterization of the classical geometric designs

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

The dimension of a combinatorial design \({{\mathcal D}}\) over a finite field F = GF(q) was defined in (Tonchev, Des Codes Cryptogr 17:121–128, 1999) as the minimum dimension of a linear code over F that contains the blocks of \({{\mathcal D}}\) as supports of nonzero codewords. There it was proved that, for any prime power q and any integer n ≥ 2, the dimension over F of a design \({{\mathcal D}}\) that has the same parameters as the complement of a classical point-hyperplane design PG n-1(n, q) or AG n-1(n, q) is greater than or equal to n + 1, with equality if and only if \({{\mathcal D}}\) is isomorphic to the complement of the classical design. It is the aim of the present paper to generalize this Hamada type characterization of the classical point-hyperplane designs in terms of associated codes over F = GF(q) to a characterization of all classical geometric designs PG d (n, q), where 1 ≤ dn − 1, in terms of associated codes defined over some extension field E = GF(q t) of F. In the affine case, we conjecture an analogous result and reduce this to a purely geometric conjecture concerning the embedding of simple designs with the parameters of AG d (n, q) into PG(n, q). We settle this problem in the affirmative and thus obtain a Hamada type characterization of AG d (n, q) for d = 1 and for d > (n − 2)/2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beth T., Jungnickel D., Lenz H.: Design Theory, 2nd edn. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  2. Bierbrauer J.: Introduction to Coding Theory. Chapman & Hall, London (2005)

    MATH  Google Scholar 

  3. Bose R.C., Burton R.C.: A characterization of flat spaces in a finite geometry and the uniqueness of the Hamming and the MacDonald codes. J. Comb. Theory 1, 96–104 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  4. Clark D., Jungnickel D., Tonchev V.D.: Affine geometry designs, polarities, and Hamada’s conjecture. J. Comb. Theory A 118, 231–239 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Doyen J., Hubaut X., Vandensavel M.: Ranks of incidence matrices of Steiner triple systems. Math. Z. 163, 251–259 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  6. Giorgetti M., Previtali A.: Galois invariance, trace codes and subfield subcodes. Finite Fields Appl. 16, 96–99 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Goethals J.-M., Delsarte P.: On a class of majority-logic decodable cyclic codes. IEEE Trans. Inform. Theory 14, 182–188 (1968)

    Article  MathSciNet  Google Scholar 

  8. Graham R.L., MacWilliams J.: On the number of information symbols in difference-set cyclic codes. Bell Syst. Tech. J. XLV, 1057–1070 (1966).

  9. Hamada N.: On the p-rank of the incidence matrix of a balanced or partially balanced incomplete block design and its application to error correcting codes. Hiroshima Math. J. 3, 154–226 (1973)

    MathSciNet  Google Scholar 

  10. Hamada N., Ohmori H.: On the BIB-design having the minimum p-rank. J. Comb. Theory A 18, 131–140 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  11. Harada M., Lam C.W.H., Tonchev V.D.: Symmetric (4,4)-nets and generalized Hadamard matrices over groups of order 4. Des. Codes Cryptogr. 34, 71–87 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jungnickel D., Tonchev V.D.: Polarities, quasi-symmetric designs, and Hamada’s conjecture. Des. Codes Cryptogr. 51, 131–140 (2009)

    Article  MathSciNet  Google Scholar 

  13. Jurrius R.: Weight enumeration of codes from finite spaces. Des. Codes Cryptogr. (2011). doi:10.1007/s10623-011-9557-2.

  14. MacWilliams F.J., Mann H.B.: On the p-rank of the design matrix of a difference set. Inform. Control 12, 474–488 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  15. MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977)

    MATH  Google Scholar 

  16. Mavron V.C., McDonough T.P., Tonchev V.D.: On affine designs and Hadamard designs with line spreads. Discret. Math. 308, 2742–2750 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rahman M., Blake I.F.: Majority logic decoding using combinatorial designs. IEEE Trans. Inform. Theory 21, 585–587 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rudolph L.D.: A class of majority-logic decodable codes. IEEE Trans. Inform. Theory 23, 305–307 (1967)

    Article  Google Scholar 

  19. Smith K.J.C.: On the p-rank of the incidence matrix of points and hyperplanes in a finite projective geometry. J. Comb. Theory 7, 122–129 (1969)

    Article  MATH  Google Scholar 

  20. Teirlinck L.: On projective and affine hyperplanes. J. Comb. Theory A 28, 290–306 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tonchev V.D.: Quasi-symmetric 2-(31,7,7)-designs and a revision of Hamada’s conjecture. J. Comb. Theory A 42, 104–110 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tonchev V.D.: Linear perfect codes and a characterization of the classical designs. Des. Codes Cryptogr. 17, 121–128 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tonchev V.D.: A note on MDS codes, n-arcs and complete designs. Des. Codes Cryptogr. 29, 247–250 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Jungnickel.

Additional information

This is one of several papers published together in Designs, Codes and Cryptography on the special topic: “Geometric and Algebraic Combinatorics”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jungnickel, D., Tonchev, V.D. A Hamada type characterization of the classical geometric designs. Des. Codes Cryptogr. 65, 15–28 (2012). https://doi.org/10.1007/s10623-011-9580-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-011-9580-3

Keywords

Mathematics Subject Classification (2010)

Navigation