Skip to main content
Log in

On the unique representation of very strong algebraic geometry codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

This paper addresses the question of retrieving the triple \({(\mathcal X,\mathcal P, E)}\) from the algebraic geometry code \({\mathcal C = \mathcal C_L(\mathcal X, \mathcal P, E)}\), where \({\mathcal X}\) is an algebraic curve over the finite field \({\mathbb F_q, \,\mathcal P}\) is an n-tuple of \({\mathbb F_q}\)-rational points on \({\mathcal X}\) and E is a divisor on \({\mathcal X}\). If \({\deg(E)\geq 2g+1}\) where g is the genus of \({\mathcal X}\), then there is an embedding of \({\mathcal X}\) onto \({\mathcal Y}\) in the projective space of the linear series of the divisor E. Moreover, if \({\deg(E)\geq 2g+2}\), then \({I(\mathcal Y)}\), the vanishing ideal of \({\mathcal Y}\), is generated by \({I_2(\mathcal Y)}\), the homogeneous elements of degree two in \({I(\mathcal Y)}\). If \({n >2 \deg(E)}\), then \({I_2(\mathcal Y)=I_2(\mathcal Q)}\), where \({\mathcal Q}\) is the image of \({\mathcal P}\) under the map from \({\mathcal X}\) to \({\mathcal Y}\). These three results imply that, if \({2g+2\leq m < \frac{1}{2}n}\), an AG representation \({(\mathcal Y, \mathcal Q, F)}\) of the code \({\mathcal C}\) can be obtained just using a generator matrix of \({\mathcal C}\) where \({\mathcal Y}\) is a normal curve in \({\mathbb{P}^{m-g}}\) which is the intersection of quadrics. This fact gives us some clues for breaking McEliece cryptosystem based on AG codes provided that we have an efficient procedure for computing and decoding the representation obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbott J., Bigatti A., Kreuzer M., Robbiano L.: Computing ideals of points. J. Symb. Comput. 30(4), 341–356 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arbarello E., Sernesi E.: Petri’s approach to the study of the ideal associated to a special divisor. Invent. Math. 49, 99–119 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arbarello E., Cornalba M., Griffiths P.A., Harris J.: Geometry of Algebraic Curves. Springer, New York (1985)

    Book  MATH  Google Scholar 

  4. Babbage D.: A note on the quadrics through a canonical curve. J. Lond. Math. Soc. 14, 310–315 (1939)

    Article  MathSciNet  Google Scholar 

  5. Berger T., Loidreau P.: How to mask the structure of codes for a cryptographic use. Des. Codes Cryptogr. 35, 63–79 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bernstein D.: Introduction to post-quantum cryptography. In: Bernstein, D.J., Buchmann, J., Dahmen, E. (eds) Post-quantum Cryptography, pp. 1–14. Springer, Berlin (2009)

    Chapter  Google Scholar 

  7. Bordiga G.: Studio generale della quartica normale. Atti. R. Ist. Veneto Sci. Lett. Arti. 6: 503–525 (1885–1886).

  8. Bruns W., Vetter U.: Determinantal rings. In: Lecture Notes in Mathematics, vol. 1327. Springer, Berlin (1988).

  9. Carlini E., Catalisano M.: Existence results for rational normal cuurves. J. Lond. Math. Soc. 76(2), 73–86 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cascudo I., Chen H., Cramer R., Xing X.: Asymptotically good ideal linear secret sharing with strong multiplication overy any fixed finite field. In: Halevi S. (ed.) Advances in Cryptology—CRYPTO 2009, Lecture Notes in Computer Science, vol. 5677, pp. 466–486. Springer, Berlin (2009).

  11. Castelnuovo G.: Studio dellinvoluzione generale sulle curve razionali. Atti. R. Ist. Veneto Sci. Lett. Arti. 6, 1167–1199 (1885–1886).

  12. Cioffi F.: Minimally generating ideals of points in polynomial time using linear algebra. Ric. Mat. XLVIII 1, 55–63 (1999)

    MathSciNet  Google Scholar 

  13. Enriques F.: Sulle curve canoniche di genere p dello spazio a p−1 dimensioni. Rend. Accad. Sci. Ist. Bologna 23, 80–82 (1919)

    Google Scholar 

  14. Faure C., Minder L.: Cryptanalysis of the McEliece cryptosystem over hyperelliptic codes. In: Proceedings of the 11th International Workshop on Algebraic and Combinatorial Coding Theory, ACCT 2008, Pamporovo, pp. 99–107 (2008).

  15. Fortuna E., Gianni P., Trager B.: Ideals of curves given by points. In: Seppälä M., Volcheck E. (eds.) Computational Algebraic and Analytic Geometry, vol. 572, pp. 71–88. American Mathematical Society, Providence (2012).

  16. Goppa V.: Codes associated with divisors. Probl. Inf. Transm. 13, 22–26 (1977)

    MathSciNet  Google Scholar 

  17. Griffiths P., Harris J.: Principles of Algebraic Geometry. Wiley-Interscience, New York (1978)

    MATH  Google Scholar 

  18. Harris J.: Algebraic Geometry, a First Course. Springer, New York (1978)

    Google Scholar 

  19. Hirschfeld J.W.P., Kochmáros G., Torres F.: Algebraic Curves Over a Finite Field. Princeton University Press, Princeton (2008)

    MATH  Google Scholar 

  20. Høholdt T., Pellikaan R.: On decoding algebraic-geometric codes. IEEE Trans. Inf. 41, 1589–1614 (1995)

    Article  Google Scholar 

  21. Høholdt T., Lint J.v., Pellikaan R.: Algebraic geometry codes. In: Pless V., Huffman W. (eds.) Handbook of Coding Theory, vol. 1, pp. 871–961. North-Holland, Amsterdam (1998).

  22. Homma M.: On the equations defining a projective curve embedded by a nonspecial divisor. Tsukuba J. Math. 3(2), 31–39 (1979)

    MATH  MathSciNet  Google Scholar 

  23. Huffman W.C., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  24. Janwa H., Moreno O.: McEliece public crypto system using algebraic-geometric codes. Des. Codes Cryptogr. 8, 293–307 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  25. Lakshman Y.N.: A single exponential bound on the complexity of computing Gröbner bases of zero-dimensional ideals. In: Effective Methods in Algebraic Geometry (Castiglioncello, 1990), Progress in Mathematics, vol. 94, pp. 227–234. Birkhäuser, Boston (1991).

  26. Mancini M.: Projectively normal curves defined by quadrics. Rend. Semin. Mat. Univ. Politech. Torino 59(4), 269–275 (2001)

    MATH  MathSciNet  Google Scholar 

  27. Márquez-Corbella I., Martínez-Moro E., Pellikaan R.: Cryptanalysis of public-key cryptosystems based on algebraic geometry codes. Oberwolfach Prepr. OWP 2012-01, 1–17 (2012).

  28. Márquez-Corbella I., Martínez-Moro E., Pellikaan R.: The non-gap sequence of a subcode of a generalized Reed–Solomon code. Des. Codes Cryptogr. doi:10.1007/s10623-012-9694-2 (2012).

  29. McEliece R.J.: A public-key cryptosystem based on algebraic coding theory. DSN Prog. Rep. 42–44, 114–116 (1978).

    Google Scholar 

  30. Möller H.M., Buchberger B.: The construction of multivariate polynomials with preassigned zeros. In: Computer Algebra (Marseille, 1982), Lecture Notes in Computer Science, vol. 144, pp. 24–31. Springer, Berlin (1982).

  31. Mumford D.: Varieties defined by quadratic equations. In: Questions on Algebraic Varieties, C.I.M.E., III Ciclo, Varenna, 1969, pp. 29–100. Edizioni Cremonese, Rome (1970).

  32. Mumford D.: Curves and Their Jacobians. University of Michigan Press, Ann Arbor (1975)

    MATH  Google Scholar 

  33. Munuera C., Pellikaan R.: Equality of geometric Goppa codes and equivalence of divisors. J. Pure Appl. Algebra 90(3), 229–252 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  34. Niederreiter H.: Knapsack-type crypto systems and algebraic coding theory. Probl. Control Inf. Theory 15(2), 159–166 (1986)

    MATH  MathSciNet  Google Scholar 

  35. Pellikaan R., Shen B.Z., van Wee G.J.M.: Which linear codes are algebraic-geometric? IEEE Trans. Inf. Theory 37, 583–602 (1991)

    Article  MATH  Google Scholar 

  36. Petri K.: Über die invariante Darstellung algebraischer Funktionen einer Veränderlichen. Math. Ann. 88(3–4), 242–289 (1923)

    Article  MATH  MathSciNet  Google Scholar 

  37. Piggott H.E., Steiner A.: Isogonal conjugates. A new approach to certain geometrical theorems and to a general theory of conics. Math. Gaz. 31, 130–144 (1947)

    MathSciNet  Google Scholar 

  38. Room T.: The Geometry of Determinantal Loci. Cambridge University Press, Cambridge (1938)

    Google Scholar 

  39. Saint-Donat B.: Sur les équations définissant une courbe algébrique. C. R. Acad. Sci. Paris 274, 324–327, 487–489 (1972).

    Google Scholar 

  40. Saint-Donat B.: On Petri’s analysis of the linear system of quadrics through a canonical curve. Math. Ann. 206, 157–175 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  41. Sidelnikov V.M., Shestakov S.O.: On the insecurity of cryptosystems based on generalized Reed–Solomon codes. Discret. Math. Appl. 2, 439–444 (1992)

    MathSciNet  Google Scholar 

  42. Stichtenoth H.: The automorphisms of geometric Goppa codes. J. Algebra 130, 113–121 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  43. Stichtenoth H.: Algebraic function fields and codes. In: Graduate Texts in Mathematics, vol. 254, 2nd edn. Springer, Berlin (2009).

  44. Tsfasman M.A., Vlǎduţ S.: Algebraic-Geometric Codes. Kluwer, Dordrecht (1991)

    Book  MATH  Google Scholar 

  45. Veronese G.: Behandlung der projectivischen Verhältnisse der Räume von verschiedenen Dimensionen durch das Princip des Projectirens und Schneidens. Math. Ann. 19, 161–234 (1882)

    Article  MathSciNet  Google Scholar 

  46. Wieschebrink C.: An attack on the modified Niederreiter encryption scheme. In: PKC 2006, Lecture Notes in Computer Science, vol. 3958, pp. 14–26. Springer, Berlin (2006).

  47. Wieschebrink C.: Cryptanalysis of the Niederreiter public key scheme based on GRS subcodes. In: Post-quantum Cryptography, Lecture Notes in Computer Science, vol. 6061, pp. 61–72. Springer, Berlin (2010).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgar Martínez-Moro.

Additional information

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue on Coding Theory and Applications”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Márquez-Corbella, I., Martínez-Moro, E. & Pellikaan, R. On the unique representation of very strong algebraic geometry codes. Des. Codes Cryptogr. 70, 215–230 (2014). https://doi.org/10.1007/s10623-012-9758-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-012-9758-3

Keywords

Mathematics Subject Classification (2000)

Navigation