Skip to main content
Log in

Enumeration of Kerdock codes of length 64

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

An algorithm for enumerating Kerdock codes is discussed and used to show that the Kerdock code of length 64 is unique up to equivalence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borges J., Fernandez C., Phelps K.T.: QRM codes. IEEE Trans. Inf. Theory 54(1), 380–386 (2008).

  2. Borges J., Phelps K.T., Rifa J., Zinoviev V.: On \({\mathbb{Z}}_4\)-linear Preparata-like and Kerdock-like codes. IEEE Trans. Inf. Theory 49(11), 2834–2843 (2003).

  3. Calderbank A.R., Cameron P.J., Kantor W.M., Seidel J.J.: \({\mathbb{Z}}_4\)-Kerdock codes, orthogonal spreads, and extremal Euclidean line-sets. Proc. Lond. Math. Soc. (3) 75(2), 436–480 (1997).

  4. Carlet C., Yucas J.: Piecewise constructions of bent and almost optimal Boolean functions. Des. Codes Cryptogr. 37, 449–464 (2005).

  5. Hammons A.R., Kumar P.V., Calderbank A.R., Sloane N.J.A., Sole P.: The \({\mathbb{Z}}_{4}\)-linearity of Kerdock, Preparata, Goethals and related codes. IEEE Trans. Inf. Theory 40, 301–319 (1994).

  6. Kantor W.M.: An exponential number of generalized Kerdock codes. Inf. Control 53, 74–80 (1982).

  7. Kantor W. M.: Codes, quadratic forms and finite geometries. Different Aspects of Coding Theory (San Francisco, CA, 1995). In: Proceedings of the Symposia in Applied Mathematics, vol. 50, pp. 153–177. American Mathematical Society, Providence (1995).

  8. Kantor W.M., Williams M.E.: Symplectic semi-field planes and \({\mathbb{Z}}_4\)-linear codes. Trans. Am. Math. Soc. 356(3), 895–938 (2003).

  9. Kerdock A.M.: A class of low rate nonlinear binary codes. Inf. Control 20, 182–187 (1972).

  10. MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1997).

  11. Preparata F.P.: A class of optimum nonlinear double-error correcting codes. Inf. Control 13, 378–400 (1968).

  12. Rothaus O.S.: On bent functions. J. Comb. Theory Ser. A 20(3), 300–305 (1976).

  13. Semakov N.V., Zinoviev V.A., Zaitsev G.V.: On duality of Preparata and Kerdock codes. In: Proceedings of the Fifth All-Union Conference on Coding Theory, Part 2, Moscow-Gorkyi, Moscow, pp. 55–58 (1972).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Phelps.

Additional information

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue on Cryptography, Codes, Designs and Finite Fields: In Memory of Scott A. Vanstone”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phelps, K. Enumeration of Kerdock codes of length 64. Des. Codes Cryptogr. 77, 357–363 (2015). https://doi.org/10.1007/s10623-015-0053-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-015-0053-y

Keywords

Mathematics Subject Classification

Navigation