Skip to main content
Log in

MaxMinMax problem and sparse equations over finite fields

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Asymptotical complexity of polynomial equation systems over finite field \(F_q\) is studied. Let \({\mathcal {X}}=\{X_1,\ldots ,X_m\},\, |\bigcup _{i=1}^{m}X_i|\le n\) be a fixed family of variable sets and the polynomials \(f_i(X_i)\) are taken independently and uniformly at random from the set of all polynomials of degree \({\le }q-1\) in each of the variables in \(X_i\). In particular, it is proved if \(|X_i|\le 3, m=n\), then the average complexity of finding all solutions in \(F_q\) to \(f_i(X_i)=0\, (1\le i\le m)\) is at most \( q^{\frac{n}{5.7883}+O(\log n)}\) for arbitrary \({\mathcal {X}}\) and \(q\). The proof is based on a detailed analysis of MaxMinMax problem, a novel problem for hypergraphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Balakin G.V., Bachurin S.A.: Evaluation of the successive search for unknowns (in Russian). Trudy po diskretnoj matematike 6 7–13 Fizmatlit (2002).

  2. Bard G.V., Courtois N.T., Jefferson C.: Efficients methods for conversion and solution of sparse systems of low-degree multivariate polynomials over \(GF(2)\) via SAT-solvers. Cryptology ePrint Archive: Report (2007/024).

  3. Bardet M., Faugére J.-C., Salvy B.: Complexity of Gröbner basis computation for semi-regular overdetermined sequences over \(F_2\) with solutions in \(F_2\). Research Report RR-5049 INRIA (2003).

  4. Buchberger B.: Theoretical basis for the reduction of polynomials to canonical forms. SIGSAM Bull. 39, 19–24 (1976).

  5. Courtois N.T., Bard G.V.: Algebraic cryptanalysis of the data encryption standard. In: Galbraith, S.D. (ed.) Cryptography and Coding 2007. LNCS, 4887, pp. 152–169. Springer, Berlin (2007).

  6. Courtois N., Pieprzyk J.: Cryptanalysis of block ciphers with overdefined systems of equations. In: Zheng, Y. (ed.) Asiacrypt 2002. LNCS, 2501, pp. 267–287. Springer, Heidelberg (2002).

  7. Courtois N., Klimov A., Patarin J., Shamir A.: Efficient algorithms for solving overdefined systems of multivariate polynomial equations. In: Preneel B. (ed.) Eurocrypt 2000. LNCS, 1807, pp. 392–407. Springer, Heidelberg (2000).

  8. Davis M., Logemann G., Loveland D.: A machine program for theorem proving. Commun. ACM 5, 394–397 (1962).

  9. Davis M., Putnam H.: A computing procedure for quantification theory. J. ACM 7, 201–215 (1960).

  10. Garcia F.D., de Koning Gans G., Muijrers R., van Rossum P., Verdult R., Schreur R.W., Jacobs B.: Dismantling MIFARE classics. In: Jajodia S., Lopez J. (eds.) ESORICS 2008. LNCS, 5283, pp. 97–114. Springer, Heidelberg (2008).

  11. Eén N., Sörensson N.: MiniSat home page. http://minisat.se/.

  12. Faugère J.C.: A new efficient algorithm for computing Gröbner bases. J. Pure Appl. Algebr. 139, 61–68 (1999).

  13. Faugère J.C.: A new efficient algorithm for computing Gröbner bases without reduction to zero (F5). In: Wan P.S. (ed.) ISSAC 2002, pp. 75–83. ACM Press, New York (2002).

  14. Horak P., Tuza Z.: Speeding up deciphering by hypergraph ordering. Des. Codes Cryptogr. 75, 175–185 (2013). doi:10.1007/s10623-013-9899-z.

  15. Iwama K., Seto K., Takai T., Tamaki S.: Improved randomised algorithms for 3-SAT. ISAAC 2010, Part I. LNCS, 6506, pp. 73–84. Springer, Heidelberg (2010).

  16. Lazard D.: Gröbner-bases, Gaussian elimination and resolution of systems of algebraic equations. EUROCAL, pp. 146–156. Springer, New York (1983).

  17. Prachar K.: Primzahlverteilung. Springer, Berlin (1957).

  18. Raddum H.: Solving non-linear sparse equation systems over \(GF(2)\) using graphs. University of Bergen, preprint (2004).

  19. Raddum H., Semaev I.: Solving multiple right hand sides linear equations. Des. Codes Cryptogr. 49, pp. 147–160 (2008), In: Extended Abstract in Proceedings of WCC’07, 16–20 April 2007, Versailles, France, INRIA (2007).

  20. Semaev I.: On solving sparse algebraic equations over finite fields. Des. Codes Cryptogr. 49, 47–60 (2008).

  21. Semaev I.: Sparse algebraic equations over finite fields. SIAM J. Comput. 39, 388–409 (2009).

  22. Semaev I.: Improved agreeing-gluing algorithm. Math. Comput. Sci. 7, 321–339 (2013).

  23. Yang B.Y., Chen J.M., Courtois N.: n asymptotic security estimates in XL and Gröbner bases-related algebraic cryptanalysis. LNCS, 3269, pp. 401–413. Springer, Heidelberg (2004).

  24. Zakrevskij A., Vasilkova I.: Reducing large systems of Boolean equations. In: 4th International Workshop on Boolean Problems. Freiberg University, 21–22 Sep (2000).

Download references

Acknowledgments

I am grateful to Peter Horak for a number of suggestions on improving the presentation of an earlier variant of this work. The competition with [14] stimulated my research. I am grateful to four anonymous referees for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Semaev.

Additional information

Communicated by I. Shparlinski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semaev, I. MaxMinMax problem and sparse equations over finite fields. Des. Codes Cryptogr. 79, 383–404 (2016). https://doi.org/10.1007/s10623-015-0058-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-015-0058-6

Keywords

Mathematics Subject Classification

Navigation