Skip to main content
Log in

Finite field constructions of combinatorial arrays

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We survey a number of topics and constructions of combinatorial arrays based on finite fields. These combinatorial objects include orthogonal arrays, covering arrays, ordered orthogonal arrays, permutation arrays, frequency permutation arrays, hypercubes and Costas arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bailey R.A., Cameron P.J., Connelly R.: Sudoku, gerechte designs, resolutions, affine space, spreads, reguli, and Hamming codes. Am. Math. Mon. 115(5), 383–404 (2008).

  2. Brouwer A.E., Shearer J.B., Sloane N.J.A., Smith W.D.: A new table of constant weight codes. IEEE Trans. Inf. Theory 36, 1334–1380 (1990).

  3. Bush K.A.: Orthogonal arrays of index unity. Ann. Math. Stat. 23(3), 426–434 (1952).

  4. Castoldi A., Moura L., Panario D., Stevens B.: Ordered orthogonal array constructions using LFSR sequences. Submitted (2015).

  5. Chu W., Colbourn C.J., Dukes P.: Constructions for permutation codes in powerline communications. Des. Codes Cryptogr. 32, 51–64 (2004).

  6. Colbourn C.J.: Combinatorial aspects of covering arrays. Le Matematiche (Catania) 58, 121–167 (2004).

  7. Colbourn C.J.: Covering arrays from cyclotomy. Des. Codes Cryptogr. 55, 201–219 (2010).

  8. Colbourn C.J.: Covering array tables. http://www.public.asu.edu/ccolbou/src/tabby/catable.html. Accessed 4 Oct 2015.

  9. Colbourn C.J., Dinitz J.H. (eds.): The CRC Handbook of Combinatorial Designs, 2nd edn. CRC, Boca Raton (2007).

  10. Colbourn C.J., Kløve T., Ling A.C.H.: Permutation arrays for powerline communication and mutually orthogonal latin squares. IEEE Trans. Inf. Theory 50, 1289–1291 (2004).

  11. Costas J.P.: Medium constraints on sonar design and performance. Class 1 Report R65EMH33, G.E. Corporation, New York (1965).

  12. Costas J.P.: A study of a class of detection waveforms having nearly ideal range-Doppler ambiguity properties. In: Proceedings of the IEEE, vol. 72, pp. 996–1009 (1984).

  13. de la Torre D.R., Colbourn C.J., Ling A.C.H.: An application of permutation arrays to block ciphers. Congr. Numer. 145, 5–7 (2000).

  14. Dénes J., Keedwell A.D.: Latin Squares and Their Applications. Academic Press, New York (1974).

  15. Dewar M., Moura L., Panario D., Stevens B., Wang Q.: Division of trinomials by pentanomials and orthogonal arrays. Des. Codes Cryptogr. 45(1), 1–17 (2007).

  16. Deza M., Vanstone S.A.: Bounds on permutation arrays. J. Stat. Plan. Inference 2, 197–209 (1978).

  17. Drakakis K., Gow R., McGuire G.: APN permutations on \({\mathbb{Z}}_n\) and Costas arrays. Discret. Appl. Math. 157, 3320–3326 (2009).

  18. Drakakis K., Iorio F., Rickard S.: The enumeration of Costas arrays of order 28 and its consequences. Adv. Math. Commun. 5, 69–86 (2011).

  19. Drakakis K., Iorio F., Rickard S., Walsh J.: Results on the enumeration of Costas arrays of order 29. Adv. Math. Commun. 5, 547–553 (2011).

  20. Drakakis K., Requena V., McGuire G.: On the nonlinearity of exponential Welch Costas functions. IEEE Trans. Inf. Theory 56, 1230–1238 (2010).

  21. Ethier J., Mullen G.L.: Strong forms of orthogonality for sets of hypercubes. Discret. Math. 312, 2050–2061 (2012).

  22. Ethier J., Mullen G.L.: Strong forms of orthogonality for sets of frequency hypercubes. Quasigroups Relat. Syst. 21, 185–202 (2013).

  23. Ethier J., Mullen G.L., Panario D., Stevens B., Thomson D.: Sets of orthogonal hypercubes of class \(r\). J. Comb. Theory Ser. A 119, 430–439 (2011).

  24. Golomb S.W.: Algebraic constructions for Costas arrays. J. Comb. Theory Ser. A 37, 13–21 (1984).

  25. Golomb S.W., Gong G.: Signal Design for Good Correlation: For Wireless Communication, Cryptography, and Radar. Cambridge University Press, Cambridge (2005).

  26. Golomb S.W., Gong G.: The status of Costas arrays. IEEE Trans. Inf. Theory 53, 4260–4265 (2007).

  27. Golomb S.W., Moreno O.: On periodicity properties of Costas arrays and a conjecture on permutation polynomials. IEEE Trans. Inf. Theory 42, 2252–2253 (1996).

  28. Hedayat A.S., Sloane N.J.A., Stufken J.: Orthogonal Arrays: Theory and Applications. Springer, Berlin (1999).

  29. Huczynska S., Mullen G.L.: Constructing permutation arrays using affine resolvable designs. Preprint.

  30. Jedwab J., Wodlinger J.: The deficiency of Costas arrays. IEEE Trans. Inf. Theory 60, 7947–7954 (2014).

  31. Lawrence K.M.: A combinatorial characterization of \((t, m, s)\). J. Comb. Des. 4, 275–293 (1996).

  32. Laywine C.F., Mullen G.L.: Discrete Mathematics Using Latin Squares. Wiley, New York (1998).

  33. Lidl R., Niederreiter H.: Finite Fields, 2nd edn. Cambridge University Press, Cambridge (1997).

  34. Martin W.J., Stinson D.R.: A generalized Rao bound for ordered orthogonal arrays and \((t, m, s)\)-nets. Can. Math. Bull. 442, 359–370 (1999).

  35. Mavron V.C., McDonough T.P., Mullen G.L.: The geometry of sets of orthogonal frequency hypercubes. J. Comb. Des. 15, 449–459 (2007).

  36. Morgan I.H.: Properties of complete sets of mutually equiorthogonal frequency hypercubes. Ann. Comb. 1, 377–389 (1997).

  37. Morgan I.H.: Construction of complete sets of mutually orthogonal frequency hypercubes. Discret. Math. 186, 237–251 (1998).

  38. Mullen G.L.: Polynomial representation of complete sets of mutually orthogonal frequency squares of prime power order. Discret. Math. 69, 79–84 (1988).

  39. Mullen G.L.: Latin squares. In: Mullen G.L., Panario D. (eds.) Handbook of Finite Fields, pp. 550–556. CRC, Boca Raton (2013).

  40. Mullen G.L., Panario D.: Handbook of Finite Fields. Series on Discrete Mathematics and Its Applications. CRC, Boca Raton (2013).

  41. Mullen G.L., Schmid W.C.: An equivalence between \((t, m, s)\)-nets and strongly orthogonal hypercubes. J. Comb. Theory Ser. A 76, 164–174 (1996).

  42. Mullen G.L., Whittle G.: Points sets with uniformity properties and orthogonal hypercubes. Monatsh. Math. 113, 265–273 (1992).

  43. Mullen G.L., Yucas J.: Primitive polynomials over finite fields and partial orthogonal arrays. preprint.

  44. Munemasa A.: Orthogonal arrays, primitive trinomials, and shift-register sequences. Finite Fields Appl. 4(3), 252–260 (1998).

  45. Muratović-Ribić A., Pott A., Thomson D., Wang Q.: On the characterization of a semi-multiplicative analogue of planar functions over finite fields. Contemp. Math. 632, 317–325 (2015).

  46. Niederreiter H.: Point sets and sequences with small discrepancy. Monatsh. Math. 104, 273–377 (1987).

  47. Niederreiter H.: Random number generation and quasi-Monte Carlo methods. CBMS-NSF Ser. Appl. Math. 63, SIAM, Philadelphia (1992).

  48. Panario D., Sakzad A., Stevens B., Wang Q.: Two new measures for permutations: ambiguity and deficiency. IEEE Trans. Inf. Theory 57, 7648–7657 (2011).

  49. Panario D., Sakzad A., Stevens B., Thomson D., Wang Q.: Ambiguity and deficiency of permutations over finite fields with linearized difference map. IEEE Trans. Inf. Theory 59, 5616–5626 (2013).

  50. Panario D., Sosnovski O., Stevens B., Wang Q.: Divisibility of polynomials over finite fields and combinatorial applications. Des. Codes Cryptogr. 63(3), 425–445 (2012).

  51. Raaphorst S., Moura L., Stevens B.: A construction for strength-3 covering arrays from linear feedback shift register sequences. Des. Codes Cryptogr. 73(3), 949–968 (2014).

  52. Sherwood G.B., Martirosyan S.S., Colbourn C.J.: Covering arrays of higher strength from permutation vectors. J. Comb. Des. 14(3), 202–213 (2006).

  53. Tzanakis G., Moura L., Panario D., Stevens B.: Constructing new covering arrays from LFSR sequences over finite fields. Discret. Math. (to appear) (2015).

Download references

Acknowledgments

We would like to thank Dieter Jungnickel, Brett Stevens, David Thomson and Peter Wild for many valuable suggestions that improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Panario.

Additional information

This is one of several papers published in Designs, Codes and Cryptography comprising the 25th Anniversary Issue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moura, L., Mullen, G.L. & Panario, D. Finite field constructions of combinatorial arrays. Des. Codes Cryptogr. 78, 197–219 (2016). https://doi.org/10.1007/s10623-015-0152-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-015-0152-9

Keywords

Mathematics Subject Classification

Navigation