Skip to main content
Log in

Anonymous and leakage resilient IBE and IPE

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We construct identity-based encryption and inner product encryption schemes under the decision linear assumption. Their private user keys are leakage-resilient in several scenarios. In particular,

  • In the bounded memory leakage model (Akavia et al., TCC, vol. 5444, pp. 474–495, 2009), our basic schemes reach the maximum-possible leakage rate \(1-o(1)\).

  • In the continual memory leakage model (Brakerski et al., Overcoming the hole in the bucket: public-key cryptography resilient to continual memory leakage, 2010; Dodis et al., Cryptography against continuous memory attacks, 2010), variants of the above schemes enjoy leakage rate at least \(\frac{1}{2} -o(1)\). Among the results, we improve upon the work of Brakerski et al. by presenting adaptively secure IBE schemes.

In addition, we prove that our IBE schemes are anonymous under the DLIN assumption, so that ciphertexts leaks no information on the corresponding identities. Similarly, attributes in IPE are proved computationally hidden in the corresponding ciphertexts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. J. A. Akinyele. Personal communication, 2013.

References

  1. Abdalla M., Bellare M., Catalano D., Kiltz E., Kohno T., Lange T., Malone-Lee J., Neven G., Paillier P., Shi H.: Searchable encryption revisited: consistency properties, relation to anonymous IBE, and extensions. J. Cryptol. 21(3), 350–391 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  2. Agrawal S., Boneh D., Boyen X.: Efficient lattice (H)IBE in the standard model. In: Gilbert H (ed.) Advances in Cryptology—EUROCRYPT 2010, Proceedings of the 29th Annual International Conference on the Theory and Applications of Cryptographic Techniques, French Riviera, May 30–June 3, 2010. Lecture Notes in Computer Science, vol. 6110, pp. 553–572. Springer, Berlin (2010).

  3. Agrawal S., Dodis Y., Vaikuntanathanm V., Wichs D.: On Continual Leakage of Discrete Log Representations. Cryptology ePrint Archive, Report 2012/367. http://eprint.iacr.org/. Accepted to Asiacrypt 2013 (2012).

  4. Agrawal S., Freeman D.M., Vaikuntanathan V.: Functional encryption for inner product predicates from learning with errors. Cryptology ePrint Archive, Report 2011/410. http://eprint.iacr.org/. Accepted to Asiacrypt 2011 (2011).

  5. Akavia A., Goldwasser S., Vaikuntanathan V.: Simultaneous hardcore bits and cryptography against memory attacks. In: Reingold O. (ed.) TCC. Lecture Notes in Computer Science, vol. 5444, pp. 474–495. Springer, New York (2009).

  6. Akinyele J.A., Garman C., Miers I., Pagano M.W., Rushanan M., Green M., Rubin A.D.: Charm: a framework for rapidly prototyping cryptosystems. J. Cryptogr. Eng. 3(2), 111–128 (2013).

    Article  Google Scholar 

  7. Alwen J., Dodis Y., Wichs D.: Survey: leakage resilience and the bounded retrieval model. In: Kurosawa K. (ed.) ICITS. Lecture Notes in Computer Science, vol. 5973, pp. 1–18. Springer, New York (2009).

  8. Alwen J., Dodis Y., Naor M., Segev G., Walfish S., Wichs D.: Public-key encryption in the bounded-retrieval model. In: Gilbert H. (ed.) Advances in Cryptology—EUROCRYPT 2010. Proceedings of the 29th Annual International Conference on the Theory and Applications of Cryptographic Techniques, French Riviera, May 30–June 3, 2010. Lecture Notes in Computer Science, vol. 6110, pp. 113–134. Springer, New York (2010).

  9. Boneh D., Boyen X., Shacham H.: Short group signatures. In: Franklin M.K. (ed.) CRYPTO. Lecture Notes in Computer Science, vol. 3152, pp. 41–55. Springer, New York (2004).

  10. Boneh D., Lynn B., Shacham H.: Short signatures from the Weil pairing. J. Cryptol. 17(4), 297–319 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  11. Boneh D., Raghunathan A., Segev G.: Function-private identity-based encryption: hiding the function in functional encryption. In: Canetti R., Garay J.A. (ed.) CRYPTO (2). Lecture Notes in Computer Science, vol. 8043, pp. 461–478. Springer, New York (2013).

  12. Boneh D., Waters B.: Conjunctive, subset, and range queries on encrypted data. In: Vadhan S.P. (ed.) TCC. Lecture Notes in Computer Science, vol. 4392, pp. 535–554. Springer, New York (2007).

  13. Brakerski Z., Kalai Y.T., Katz J., Vaikuntanathan V.: Overcoming the hole in the bucket: public-key cryptography resilient to continual memory leakage. In: Trevisan L. (ed.) 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010, 23–26 Oct 2010, Las Vegas, Nevada, USA, pp. 501–510. IEEE Computer Society. http://eprint.iacr.org/2010/278 (2010).

  14. Cash D., Hofheinz D., Kiltz E., Peikert C.: Bonsai trees, or how to delegate a lattice basis. In Gilbert H. (ed.) Advances in Cryptology—EUROCRYPT 2010. Proceedings of the 29th Annual International Conference on the Theory and Applications of Cryptographic Techniques, French Riviera, May 30–June 3, 2010. Lecture Notes in Computer Science, vol. 6110, pp. 523–552. Springer, New York (2010)

  15. Chow S.S.M., Dodis Y., Rouselakis Y., Waters B.: Practical leakage-resilient identity-based encryption from simple assumptions. In Al-Shaer E., Keromytis A.D., Shmatikov V. (ed.) ACM Conference on Computer and Communications Security, pp. 152–161. ACM, New York (2010).

  16. Damgård I., Faust S., Mukherjee P., Venturi D.: Bounded tamper resilience: how to go beyond the algebraic barrier. In Sako K., Sarkar P. (eds.) Advances in Cryptology—ASIACRYPT 2013. Proceedings of the 19th International Conference on the Theory and Application of Cryptology and Information Security, Bengaluru, India, 1–5 Dec 2013, Part II. Lecture Notes in Computer Science, vol. 8270, pp. 140–160. Springer, New York (2013).

  17. Dodis Y., Goldwasser S., Kalai Y.T., Peikert C., Vaikuntanathan V.: Public-key encryption schemes with auxiliary inputs. In: Micciancio D. (ed.) TCC. Lecture Notes in Computer Science, vol. 5978, pp. 361–381. Springer, New York (2010).

  18. Dodis Y., Haralambiev K., López-Alt A., Wichs D.: Cryptography against continuous memory attacks. In: Trevisan L. (ed.) 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010, 23–26 Oct 2010, Las Vegas, Nevada, USA, pp. 511–520. IEEE Computer Society (2010).

  19. Dodis Y., Lewko A. B., Waters B., Wichs D.: Storing secrets on continually leaky devices. In: Ostrovsky R. (ed.) FOCS, pp. 688–697. IEEE (2011).

  20. Halderman J.A., Schoen S.D., Heninger N., Clarkson W., Paul W., Calandrino J.A., Feldman A.J., Appelbaum J., Felten E.W.: Lest we remember: cold boot attacks on encryption keys. In: van Oorschot P.C. (ed.) USENIX Security Symposium, pp. 45–60. USENIX Association (2008).

  21. Hofheinz D., Kiltz E.: Programmable hash functions and their applications. J. Cryptol. 25(3), 484–527 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  22. Katz J., Sahai A., Waters B.: Predicate encryption supporting disjunctions, polynomial equations, and inner products. In: Smart N.P. (ed.) EUROCRYPT. Lecture Notes in Computer Science, vol. 4965, pp. 146–162. Springer, Berlin (2008).

  23. Kocher P.C., Jaffe J., Jun B.: Differential power analysis. In: Wiener M.J. (ed.) CRYPTO. Lecture Notes in Computer Science, vol. 1666, pp. 388–397. Springer, New York (1999).

  24. Kurosawa K., Phong L.T.: Leakage resilient IBE and IPE under the DLIN assumption. In: Jacobson Jr. M.J., Locasto, M.E., Mohassel P., Safavi-Naini R. (eds.) ACNS. Lecture Notes in Computer Science, vol. 7954, pp. 487–501. Springer, New York (2013).

  25. Lewko A.B., Lewko M., Waters B.: How to leak on key updates. In: Fortnow L., Vadhan S.P. (eds.) STOC, pp. 725–734. ACM, New York (2011).

    Google Scholar 

  26. Lewko A.B., Okamoto T., Sahai A., Takashima K., Waters B.: Fully secure functional encryption: attribute-based encryption and (hierarchical) inner product encryption. In: Gilbert H. (ed.) Advances in Cryptology—EUROCRYPT 2010, Proceedings of the 29th Annual International Conference on the Theory and Applications of Cryptographic Techniques, French Riviera, 30 May–3 June 2010. Lecture Notes in Computer Science, vol. 6110, pp. 62–91. Springer, New York (2010).

  27. Lewko A.B., Rouselakis Y., Waters B.: Achieving leakage resilience through dual system encryption. In: TCC, pp. 70–88 (2011).

  28. Li J., Guo Y., Yu Q., Lu Y., Zhang Y.: Provably secure identity-based encryption resilient to post-challenge continuous auxiliary inputs leakage. Secur. Commun. Netw. 9(10), 1016–1024 (2016).

    Article  Google Scholar 

  29. Li J., Guo Y., Yu Q., Lu Y., Zhang Y., Zhang F.: Continuous leakage-resilient certificate-based encryption. Inf. Sci. 355–356, 1–14 (2016).

    Google Scholar 

  30. Li J., Teng M., Zhang Y., Yu Q.: A leakage-resilient CCA-secure identity-based encryption scheme. Comput. J. 59(7), 1066–1075 (2016).

    Article  Google Scholar 

  31. Micali S., Reyzin L.: Physically observable cryptography (extended abstract). In: Naor M. (ed.) TCC. Lecture Notes in Computer Science, vol. 2951, pp. 278–296. Springer, New York (2004).

  32. Naor M., Segev G.: Public-key cryptosystems resilient to key leakage. In: Halevi S. (ed.) CRYPTO. Lecture Notes in Computer Science, vol. 5677, pp. 18–35. Springer, New York. http://research.microsoft.com/en-us/um/people/gilse/papers/KeyLeakage (2009).

  33. Okamoto T., Takashima K.: Fully secure functional encryption with general relations from the decisional linear assumption. In: Rabin T. (ed.) CRYPTO. Lecture Notes in Computer Science, vol. 6223, pp. 191–208. Springer, New York (2010).

  34. Quisquater J.-J., Samyde D.: Electromagnetic analysis (EMA): measures and counter-measures for smart cards. In: Attali I., Jensen T.P. (eds.) E-smart. Lecture Notes in Computer Science, vol. 2140, pp. 200–210. Springer, New York (2001).

  35. Shamir A.: Identity-based cryptosystems and signature schemes. In: CRYPTO, pp. 47–53 (1984).

  36. Waters B.: Efficient identity-based encryption without random oracles. In: Cramer R. (ed.) EUROCRYPT. Lecture Notes in Computer Science, vol. 3494, pp. 114–127. Springer, New York (2005).

  37. Yu Q., Li J., Zhang Y.: Leakage-resilient certificate-based encryption. Secur. Commun. Netw. 8, 3346–3355 (2015).

    Article  Google Scholar 

  38. Yu Q., Li J., Zhang Y., Wu W., Huang X., Xiang Y.: Certificate-based encryption resilient to key leakage. J. Syst. Softw. 116, 101–112 (2016).

    Article  Google Scholar 

  39. Yuen T.H., Chow S.S.M., Zhang Y., Yiu S.M.: Identity-based encryption resilient to continual auxiliary leakage. In: Pointcheval D., Johansson T. (eds.) EUROCRYPT. Lecture Notes in Computer Science, vol. 7237, pp. 117–134. Springer, New York (2012).

Download references

Acknowledgements

We thank the anonymous reviewers for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Trieu Phong.

Additional information

Communicated by C. Mitchell.

A preliminary version of this paper was presented at the 11th International Conference on Applied Cryptography and Network Security (ACNS ’13) [24].

Appendices

Appendix 1: Computing \(g^\mathbf {v}\)

We are given \(\mathbf {F}\in \mathbb {Z}_q^{2\times 2\ell }\), \(g^\mathbf {D}\in \mathbb {G}^{2\times 1}\) and want to compute \(g^\mathbf {v}\in \mathbb {G}^{2\ell \times 1}\) where \(\mathbf {F}\mathbf {v}= \mathbf {D}\). With all but negligible probability, we can assume that \(\mathbf {F}\) as generated in our scheme is of rank 2. Solving the linear equation \(\mathbf {F}\mathbf {v}=\mathbf {D}\) gives us \(\left[ \mathbf {I}_2 \big | \mathbf {F}_1\right] \mathbf {v}=\mathbf {F}_2\mathbf {D}\) where \(\mathbf {I}_2\) is the \(2\times 2\) identity matrix, and \(\mathbf {F}_1\in \mathbb {Z}^{2\times (2\ell -2)}, \mathbf {F}_2\in \mathbb {Z}_q^{2\times 2}\) depends on \(\mathbf {F}\). Now let \(\mathbf {w}=(\mathbf {v}[1], \mathbf {v}[2])^T\) and \(\mathbf {w}^{\prime }= (\mathbf {v}[3], \dots , \mathbf {v}[2\ell ])^T\) we have \(\mathbf {w}+ \mathbf {F}_1 \mathbf {w}^{\prime }=\mathbf {F}_2 \mathbf {D},\) so that \(\mathbf {w}^{\prime }\) can be free, and \(\mathbf {w}= \mathbf {F}_2 \mathbf {D}- \mathbf {F}_1 \mathbf {w}^{\prime }\). Since \(g^\mathbf {D}\) is given, we can compute \(g^\mathbf {w}\), and hence \(g^\mathbf {v}\) as well.

Appendix 2: Public key encryption scheme \({\mathcal {L}\ell }\) in [13]

1.1 Description

Fix integer parameter \(\ell \ge 7\). In key-generation, take random matrices \(\mathbf {A}\in \mathbb {Z}_q^{2\times \ell }\) and \(\mathbf {Y}\in \mathbb {Z}_q^{\ell \times 2}\) such that \(\mathbf {A}\mathbf {Y}= \mathbf {0}\). The public key is \(pk = g^{\mathbf {A}}\) and the secret key is \(sk = g^{\mathbf {Y}}\). To update the secret key, take random \(\mathbf {R}\in \mathbb {Z}_q^{2\times 2}\) and set \(sk^{\prime } = g^{\mathbf {Y}\mathbf {R}}\). Message space is of one bit. Encryption of bit 1 is \(g^\mathbf{u}\) for random vector \(\mathbf{u}\in \mathbb {Z}_q^{\ell }\). Encryption of bit 0 is \(g^{\mathbf{r}\mathbf {A}}\) for random vector \(\mathbf{r} \in \mathbb {Z}_q^{1\times 2}\). In decryption, given a ciphertext \(g^\mathbf{c}\) and secret key \(g^{\mathbf {Y}}\), apply pairing \({\hat{e}}\) to get \({\hat{e}}(g,g)^{\mathbf{c}\mathbf {Y}}\). If the result equals \({\hat{e}}(g,g)^{\mathbf {0}}\), return 0, otherwise return 1 as the message.

1.2 Security in CML model

Under the DLIN assumption, for \(\ell \ge 7\) and for all constants \(\gamma , c>0\), the above public key encryption scheme is secure in the CML model with update and memory leakage rates

$$\begin{aligned} (\rho _U,\rho _M)=\left( \frac{c\log _2 |q|}{(2\ell +4)\log _2 q}, \frac{\ell -6-\gamma }{2\ell }\right) . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurosawa, K., Phong, L.T. Anonymous and leakage resilient IBE and IPE. Des. Codes Cryptogr. 85, 273–298 (2017). https://doi.org/10.1007/s10623-016-0303-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-016-0303-7

Keywords

Mathematics Subject Classification

Navigation