Skip to main content
Log in

Cyclic DNA codes over the ring \(\mathbb {F}_2+u\mathbb {F}_2+v\mathbb {F}_2+uv\mathbb {F}_2+v^2\mathbb {F}_2+uv^2\mathbb {F}_2\)

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We study the structure of cyclic DNA codes of odd length over the finite commutative ring \(R=\mathbb {F}_2+u\mathbb {F}_2+v\mathbb {F}_2+uv\mathbb {F}_2 + v^2\mathbb {F}_2+uv^2\mathbb {F}_2,~u^2=0, v^3=v\), which plays an important role in genetics, bioengineering and DNA computing. A direct link between the elements of the ring R and 64 codons used in the amino acids of living organisms is established by introducing a Gray map from R to \(R_1=\mathbb {F}_2+u\mathbb {F}_2 ~(u^2=0)\). The reversible and the reversible-complement codes over R are investigated. We also discuss the binary image of the cyclic DNA codes over R. Among others, some examples of DNA codes obtained via Gray map are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abualrub T., Siap I.: Cyclic codes over the rings \({\mathbb{Z}}_2 + u{\mathbb{Z}}_2\) and \({\mathbb{Z}}_2 + u{\mathbb{Z}}_2 + u^2{\mathbb{Z}}_2\). Des. Codes Cryptogr. 42, 273–287 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  2. Abualrub T., Ghrayeb A., Zeng X.: Construction of cyclic codes over \(GF(4)\) for DNA computing. J. Frankl. Inst. 343(4–5), 448–457 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  3. Adleman L.: Molecular computation of the solution to combinatorial problems. Science 266, 1021–1024 (1994).

    Article  Google Scholar 

  4. Bayram A., Oztas E.S., Siap I.: Codes over \({\mathbb{F}}_4+v{\mathbb{F}}_4\) and some DNA applications, Des. Codes Cryptogr. (2015). doi:10.1007/s10623-015-0100-8.

  5. Benenson Y., Gil B., Ben-Dor U., Adar R., Shapiro E.: An autonomous molecular computer for logical control of gene expression. Nature 429, 423–429 (2004).

    Article  Google Scholar 

  6. Bennenni N., Guenda K., Mesnager S.: New DNA cyclic codes over rings, arXiv: 1505.06263v1 [cs.IT] (2015).

  7. Boneh D., Dunworth C., Lipton R.J., Sgall J.I.: On the computational power of DNA. Discret. Appl. Math. 71, 7994 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  8. Bonnecaze A., Udaya P.: Cyclic codes and self-dual codes over \({\mathbb{F}}_2 + u{\mathbb{F}}_2\). IEEE Trans. Inf. Theory 45, 1250–1255 (1999).

    Article  MATH  Google Scholar 

  9. Dinh H.Q.: Constacyclic codes of length \(2^s\) over Galois extension rings of \({\mathbb{F}}_{2}+u\mathbb{F}_2\). IEEE Trans. Inf. Theory 55, 1730–1740 (2009).

    Article  MATH  Google Scholar 

  10. Dinh H.Q.: On linear codes over finite rings and modules. East-West J. Math. 11, 1–149 (2009).

    MathSciNet  MATH  Google Scholar 

  11. Dinh H.Q.: Repeated-root constacyclic codes of prime power length. AMS Contemp. Math. 480, 87–100 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  12. Dinh H.Q.: On some classes of repeated-root constacyclic codes of length a power of \(2\) over Galois rings. Trends Math. 131–147 (2010).

  13. Dinh H.Q.: Constacyclic codes of length \(p^s\) over \(\mathbb{F}_{p^m}+u {\mathbb{F}}_{p^m}\). J. Algebra 324, 940–950 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  14. Dinh H.Q., López-Permouth S.R.: Cyclic and negacyclic codes over finite chain rings. IEEE Trans. Inf. Theory 50, 1728–1744 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  15. Dinh H.Q., Nguyen H.D.T.: On some classes of constacyclic codes over polynomial residue rings. Adv. Math. Commun. 6, 175–191 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  16. Dinh H.Q., Vo T.M.: Repeated-root cyclic and negacyclic codes of prime power lengths with a finite commutative chain ring alphabet. East-West J. Math. 13, 207–224 (2011).

    MathSciNet  MATH  Google Scholar 

  17. D’yachkov A., Erdos P., Macula A., Torney D., Tung C.H., Vilenkin P., White P.S.: Exordium for DNA codes. J. Comb. Optim. 7, 369–379 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  18. Gaborit P., King O.D.: Linear construction for DNA codes. Theor. Comput. Sci. 334(1–3), 99–113 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  19. Guenda K., Gulliver T.A., Solé P.: On cyclic DNA codes. In: Proceedings of IEEE International Symposium Information Theory, Istanbul, pp. 121–125 (2013).

  20. Guenda K., Gulliver T.A.: Construction of cyclic codes over \({\mathbb{F}}_2 + u{\mathbb{F}}_2\) for DNA computing. AAECC 24, 445–459 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  21. Kari L., Gloor G., Yu S.: Using DNA to solve the bounded post correspondence problem. Theor. Comput. Sci. 231, 192203 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  22. Kewat P.K., Ghosh B., Pattanayak S.: Cyclic codes over the ring \({\mathbb{Z}}_p[u, v]/\langle u^2, v^2, uv - vu\rangle \). Finite Fields Appl. 34, 161–175 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  23. Liang J., Wang L.: On cyclic DNA codes over \({\mathbb{F}}_2+u{\mathbb{F}}_2\). J. Appl. Math. Comput. (2015). doi:10.1007/s12190-015-0892-8.

  24. Limbachiya D., Rao B., Gupta M.K.: The art of DNA strings: sixteen years of DNA coding theory. arXiv: 1607.00266v1 [cs.IT] (2016).

  25. Lovgren S.: Computer made from DNA and enzymes. National Geographic (2003-02-24). http://news.nationalgeographic.com/news/2003/02/0224_030224_DNAcomputer.html.

  26. Marathe A., Condon A.E., Corn R.M.: On combinatorial DNA word design. J. Comput. Biol. 8, 201–220 (2001).

    Article  MATH  Google Scholar 

  27. Massey J.L.: Reversible codes. Inf. Control 7, 369–380 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  28. Shi M., Sole P., Wu B.: Cyclic codes and the weight enumerator of linear codes over \({\mathbb{F}}_2 + v{\mathbb{F}}_2 + v^2{\mathbb{F}}_2\). Appl. Comput. Math. 12, 247–255 (2013).

    MathSciNet  Google Scholar 

  29. Siap I., Abualrub T., Ghrayeb A.: Cyclic DNA codes over the ring \({\mathbb{F}}_2[u]/(u^2-1)\) based on the deletion distance. J. Frankl. Inst. 346, 731–740 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  30. Yildiz B., Karadeniz S.: Linear codes over \({\mathbb{F}}_2 +u{\mathbb{F}}_2 +v{\mathbb{F}}_2 + uv{\mathbb{F}}_2\). Des. Codes Cryptogr. 54, 61–81 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  31. Yildiz B., Karadeniz S.: Cyclic codes over \({\mathbb{F}}_2 +u{\mathbb{F}}_2 +v{\mathbb{F}}_2 + uv{\mathbb{F}}_2\). Des. Codes Cryptogr. 58, 221–234 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  32. Yildiz B., Siap I.: Cyclic DNA codes over the ring \({\mathbb{F}}_2[u]/(u^4-1)\) and applications to DNA codes. Comput. Math. Appl. 63, 1169–1176 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhu S., Chen X.: Cyclic DNA codes over \({\mathbb{F}}_2 +u{\mathbb{F}}_2 +v{\mathbb{F}}_2 + uv{\mathbb{F}}_2\). J. Appl. Math. Comput. (2016). doi:10.1007/s12190-016-1046-3.

  34. Zhu S., Wang Y., Shi M.: Some result on cyclic codes over \({\mathbb{F}}_2 + v{\mathbb{F}}_2\). IEEE Trans. Inf. Theory 56, 1680–1684 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to sincerely thank the referees for a very meticulous reading of this manuscript, and for valuable suggestions which help to create an improved final version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Q. Dinh.

Additional information

Communicated by J.-L. Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinh, H.Q., Singh, A.K., Pattanayak, S. et al. Cyclic DNA codes over the ring \(\mathbb {F}_2+u\mathbb {F}_2+v\mathbb {F}_2+uv\mathbb {F}_2+v^2\mathbb {F}_2+uv^2\mathbb {F}_2\) . Des. Codes Cryptogr. 86, 1451–1467 (2018). https://doi.org/10.1007/s10623-017-0405-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-017-0405-x

Keywords

Mathematics Subject Classification

Navigation