Skip to main content
Log in

The functional graph of linear maps over finite fields and applications

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Let \(\mathbb F_{q}\) be the finite field with q elements and \(n\ge 2\) be a positive integer. We study the functional graph associated to linear maps over finite fields. In particular, we describe the functional graph \(\mathcal {G}_f(\mathbb F_{q^n})\) associated to the map induced by \(L_f\) on \(\mathbb F_{q^n}\), where f is any irreducible divisor of \(x^n-1\) over \(\mathbb F_q\) and \(L_f\) is the q-associate of f. This description derives interesting information on the graph \(\mathcal {G}_f(\mathbb F_{q^n})\), such as the number of cycles and the average of the preperiod length. When \(\gcd (f, x^n-1)=1\), \(L_f\) is a permutation on \(\mathbb F_{q^n}\) and the cycle decomposition of \(\mathcal {G}_f(\mathbb F_{q^n})\) is well known. In this case, we present some applications of this result, such as the construction of linear involutions over odd characteristic and permutations with few fixed points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Blum L., Blum M., Shub M.: A simple unpredictable pseudo-random number generator. SIAM J. Comput. 15(2), 364–383 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  2. Charpin P., Mesnager S., Sarkar S.: Dickson polynomials that are involutions. In: Canteaut A., Effinger G., Huczynska S., Panario D., Storme L. (eds.) Contemporary Developments in Finite Fields and Applications, pp. 22–47. World Scientific, Singapore (2016).

    Chapter  Google Scholar 

  3. Charpin P., Mesnager S., Sarkar S.: Involutions over the Galois field \({\mathbb{F}}_{2^n}\). IEEE Trans. Inf. Theory 62, 2266–2276 (2016).

    Article  MATH  Google Scholar 

  4. Chou W., Shparlinski I.: On the cycle structure of repeated exponentiation modulo a prime. J. Number Theory 107(2), 345–356 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  5. Gassert T.: Chebyshev action on finite fields. Discret. Math. 315, 83–94 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  6. Huczynska S., Mullen G.L., Panario D., Thomson D.: Existence and properties of \(k\)-normal elements over finite fields. Finite Fields Appl. 24, 170–183 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  7. Lehmer D.H.: An extended theory of Lucas functions. Ann. Math. 31(3), 419–448 (1930).

    Article  MathSciNet  MATH  Google Scholar 

  8. Lidl R., Niederreiter H.: Finite Fields, Encyclopedia of Mathematics and Its Applications, vol. 20, 2nd edn. Cambridge University Press, Cambridge (1997).

    Google Scholar 

  9. Lucas E.: Théorie des fonctions numériques simplement périodiques. Am. J. Math. 1(4), 289–321 (1878).

    Article  Google Scholar 

  10. Mullen G.L., Vaughan T.P.: Cycles of linear permutations over a finite field. Linear Algebra Appl. 108, 63–82 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  11. Peinado A., Montoya F., Muñoz J., Yuste A.: Maximal periods of \(x^2 + c \in {\mathbb{F}}_q\), In: Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. Lecture Notes in Computer Science, vol. 2227, pp. 219–228 (2001).

  12. Pollard J.M.: A Monte Carlo method for factorization. BIT 15(3), 331–334 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  13. Pollard J.M.: Monte Carlo methods for index computation (mod \(p\)). Math. Comp. 32(143), 918–924 (1978).

    MathSciNet  MATH  Google Scholar 

  14. Qureshi C., Panario D.: Rédei actions on finite fields and multiplication map in cyclic groups. SIAM J. Discret. Math. 29(3), 1486–1503 (2015).

    Article  MATH  Google Scholar 

  15. Qureshi C., Panario D.: The graph structure of the Chebyshev polynomial over finite fields and applications. In: Workshop on Coding and Cryptography (WCC 2017).

  16. Qureshi C., Panario D., Martins R.: Cycle structure of iterating Rédei functions. Adv. Math. Commun. 11(2), 397–407 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  17. Rogers T.: The graph of the square mapping on the prime fields. Discret. Math. 148, 317–324 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  18. Toledo R.A.H.: Linear finite dynamical systems. Commun. Algebra 33(9), 2977–2989 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  19. Teske E., Williams H.C.: A Note on Shanks’ Chains of Primes. Springer, New York (2000).

    MATH  Google Scholar 

  20. Ugolini S.: Graphs associated with the map \(x\mapsto x\,+\,x^{-1}\) in finite fields of characteristic three and five. J. Number Theory 133(4), 1207–1228 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  21. Vasiga T., Shallit J.: On the iteration of certain quadratic maps over GF(\(p\)). Discret. Math. 227, 219–240 (2004).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author was partially funded by NSERC of Canada. The second author was supported by the Program CAPES-PDSE (process—88881.134747/2016-01) at Carleton University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Panario.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue on Coding and Cryptography”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panario, D., Reis, L. The functional graph of linear maps over finite fields and applications. Des. Codes Cryptogr. 87, 437–453 (2019). https://doi.org/10.1007/s10623-018-0547-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-018-0547-5

Keywords

Mathematics Subject Classification

Navigation