Skip to main content
Log in

On the resolution and optimization of a system of fuzzy relational equations with sup-T composition

  • Published:
Fuzzy Optimization and Decision Making Aims and scope Submit manuscript

Abstract

This paper provides a thorough investigation on the resolution of a finite system of fuzzy relational equations with sup-T composition, where T is a continuous triangular norm. When such a system is consistent, although we know that the solution set can be characterized by a maximum solution and finitely many minimal solutions, it is still a challenging task to find all minimal solutions in an efficient manner. Using the representation theorem of continuous triangular norms, we show that the systems of sup-T equations can be divided into two categories depending on the involved triangular norm. When the triangular norm is Archimedean, the minimal solutions correspond one-to-one to the irredundant coverings of a set covering problem. When it is non-Archimedean, they only correspond to a subset of constrained irredundant coverings of a set covering problem. We then show that the problem of minimizing a linear objective function subject to a system of sup-T equations can be reduced into a 0–1 integer programming problem in polynomial time. This work generalizes most, if not all, known results and provides a unified framework to deal with the problem of resolution and optimization of a system of sup-T equations. Further generalizations and related issues are also included for discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbasi Molai A. and Khorram E. (2007a). A modified algorithm for solving the proposed models by Ghodousian and Khorram and Khorram and Ghodousian. Applied Mathematics and Computation 190: 1161–1167

    Article  MathSciNet  MATH  Google Scholar 

  • Abbasi Molai, A., & Khorram, E. (2007b). Another modification from two papers of Ghodousian and Khorram and Ghorram et al. Applied Mathematics and Computation. doi:10.1016/j.amc.2007.07.061.

  • Abbasi Molai, A., & Khorram, E. (2007). An algorithm for solving fuzzy relation equations with max-T composition operator. Information Sciences. doi:10.1016/j.ins.2007.10.010.

  • Alsina C., Frank M.J. and Schweizer B. (2006). Associative functions: Triangular norms and copulas. World Scientific, Singarpore

    MATH  Google Scholar 

  • Arnould T. and Tano S. (1994a). A rule-based method to calculate the widest solution sets of a max–min fuzzy relational equation. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 2: 247–256

    Article  MathSciNet  Google Scholar 

  • Arnould T. and Tano S. (1994b). A rule-based method to calculate exactly the widest solution sets of a max-min fuzzy relational inequality. Fuzzy Sets and Systems 64: 39–58

    Article  MathSciNet  Google Scholar 

  • Balas E. and Padberg M.W. (1976). Set partitioning: A survey. SIAM Review 18: 710–760

    Article  MathSciNet  MATH  Google Scholar 

  • Bellman R.E. and Zadeh L.A. (1977). Local and fuzzy logics. In: Dunn, J.M. and Epstein, G. (eds) Modern uses of multiple valued logic, pp 103–165. Reidel, Dordrecht

    Google Scholar 

  • Bour L. and Lamotte M. (1987). Solutions minimales d’équations de relations floues avec la composition max t-norme. BUSEFAL 31: 24–31

    MATH  Google Scholar 

  • Bourke M.M. and Fisher D.G. (1998). Solution algorithms for fuzzy relational equations with max-product composition. Fuzzy Sets and Systems 94: 61–69

    Article  MathSciNet  MATH  Google Scholar 

  • Caprara A., Toth P. and Fischetti M. (2000). Algorithms for the set covering problem. Annals of Operations Research 98: 353–371

    Article  MathSciNet  MATH  Google Scholar 

  • Cechlárová K. (1990). Strong regularity of matrices in a discrete bottleneck algebra. Linear Algebra and Its Applications 128: 35–50

    Article  MathSciNet  MATH  Google Scholar 

  • Cechlárová K. (1995). Unique solvability of max-min fuzzy equations and strong regularity of matrices over fuzzy algebra. Fuzzy Sets and Systems 75: 165–177

    Article  MathSciNet  MATH  Google Scholar 

  • Chen L. and Wang P.P. (2002). Fuzzy relation equations (I): The general and specialized solving algorithms. Soft Computing 6: 428–435

    MATH  Google Scholar 

  • Chen L. and Wang P.P. (2007). Fuzzy relation equations (II): The branch-poit-solutions and the categorized minimal solutions. Soft Computing 11: 33–40

    Article  MATH  Google Scholar 

  • Cheng L. and Peng B. (1988). The fuzzy relation equation with union or intersection preserving operator. Fuzzy Sets and Systems 25: 191–204

    Article  MathSciNet  MATH  Google Scholar 

  • Clifford A.H. (1954). Naturally totally ordered commutative semigroups. American Journal of Mathematics 76: 631–646

    Article  MathSciNet  MATH  Google Scholar 

  • Cormen T.H., Leiserson C.E., Rivest R.L. and Stein C. (2001). Introduction to algorithms (2nd ed.). MIT Press, Cambridge, MA

    MATH  Google Scholar 

  • Cuninghame-Green R.A. (1979). Minimax algebra, Lecture Notes in Economics and Mathematical Systems, Vol. 166. Springer, Berlin

    Google Scholar 

  • Cuninghame-Green R.A. (1995). Minimax algebra and applications. Advances in Imaging and Electron Physics 90: 1–121

    Google Scholar 

  • Czogała E., Drewiak J. and Pedrycz W. (1982). Fuzzy relation equations on a finite set. Fuzzy Sets and Systems 7: 89–101

    Article  MathSciNet  MATH  Google Scholar 

  • De Baets B. (1995a). An order-theoretic approach to solving sup-\({\mathcal{T}}\) equations. In: Ruan, D. (eds) Fuzzy set theory and advanced mathematical applications, pp 67–87. Kluwer, Dordrecht

    Google Scholar 

  • De Baets, B. (1995b). Oplossen van vaagrelationele vergelijkingen: een ordetheoretische benadering, Ph.D. Dissertation, University of Gent.

  • De Baets, B. (1995c). Model implicators and their characterization. In N. Steele (Ed.), Proceedings of the First ICSC International Symposium on Fuzzy Logic (pp. A42–A49). ICSC Academic Press.

  • De Baets B. (1997). Coimplicators, the forgotten connectives. Tatra Mountains Mathematical Publications 12: 229–240

    MathSciNet  MATH  Google Scholar 

  • De Baets, B. (1998). Sup-\({\mathcal{T}}\) Equations: State of the art. In O. Kaynak, et al. (Eds.), Computational Intelligence: Soft Computing and Fuzzy-Neural Integration with Applications, NATO ASI Series F: Computer and Systems Sciences (Vol. 162, pp. 80–93). Berlin: Springer-Verlag.

  • De Baets, B. (2000). Analytical solution methods for fuzzy relational equations. In D. Dubois & H. Prade, (Eds.), Fundamentals of fuzzy sets, the handbooks of fuzzy sets series (Vol. 1, pp. 291–340). Dordrecht: Kluwer.

  • De Baets B., Van de Walle B. and Kerre E. (1998). A plea for the use of Łukasiewicz triplets in the definition of fuzzy preference structures. Part II: The identity case. Fuzzy Sets and Systems 99: 303–310

    Article  MathSciNet  MATH  Google Scholar 

  • De Cooman G. and Kerre E. (1994). Order norms on bounded partially ordered sets. Journal of Fuzzy Mathematics 2: 281–310

    MathSciNet  MATH  Google Scholar 

  • Demirli K. and De Baetes B. (1999). Basic properties of implicators in a residual framework. Tatra Mountains Mathematical Publications 16: 31–46

    MathSciNet  MATH  Google Scholar 

  • Di Martino, F., Loia, V., & Sessa, S. (2003). A method in the compression/decompression of images using fuzzy equations and fuzzy similarities. In T. Bilgiç, B. De Baets, & O. Kaynak (Eds.), Proceedings of the 10th International Fuzzy Systems Association World Congress, Istanbul, Turkey, pp. 524–527.

  • Di Nola A. (1984). An algorithm of calculation of lower solutions of fuzzy relation equation. Stochastica 3: 33–40

    Google Scholar 

  • Di Nola A. (1985). Relational equations in totally ordered lattices and their complete resolution. Journal of Mathematical Analysis and Applications 107: 148–155

    Article  MathSciNet  MATH  Google Scholar 

  • Di Nola A. (1990). On solving relational equations in Brouwerian lattices. Fuzzy Sets and Systems 34: 365–376

    Article  MathSciNet  MATH  Google Scholar 

  • Di Nola A. and Lettieri A. (1989). Relation equations in residuated lattices. Rendiconti del Circolo Matematico di Palermo 38: 246–256

    Article  MATH  Google Scholar 

  • Di Nola A., Pedrycz W. and Sessa S. (1982). On solution of fuzzy relational equations and their characterization. BUSEFAL 12: 60–71

    Google Scholar 

  • Di Nola A., Pedrycz W. and Sessa S. (1988). Fuzzy relation equations with equality and difference composition operators. Fuzzy Sets and Systems 25: 205–215

    Article  MathSciNet  MATH  Google Scholar 

  • Di Nola A., Pedrycz W., Sessa S. and Sanchez E. (1991). Fuzzy relation equations theory as a basis of fuzzy modelling: An overview. Fuzzy Sets and Systems 40: 415–429

    Article  MathSciNet  MATH  Google Scholar 

  • Di Nola A., Pedrycz W., Sessa S. and Wang P.Z. (1984). Fuzzy relation equations under triangular norms: a survey and new results. Stochastica 8: 99–145

    MathSciNet  MATH  Google Scholar 

  • Di Nola A. and Sessa S. (1983). On the set of solutions of composite fuzzy relation equations. Fuzzy Sets and Systems 9: 275–286

    Article  MathSciNet  MATH  Google Scholar 

  • Di Nola A. and Sessa S. (1988). Finite fuzzy relational equations with a unique solution in linear lattices. Journal of Mathematical Analysis and Applications 132: 39–49

    Article  MathSciNet  MATH  Google Scholar 

  • Di Nola A., Sessa S., Pedrycz W. and Sanchez E. (1989). Fuzzy relation equations and their applications to knowledge engineering. Kluwer, Dordrecht

    MATH  Google Scholar 

  • Drewniak J. (1982). Note on fuzzy relation equations. BUSEFAL 12: 50–51

    Google Scholar 

  • Drewniak J. (1983). System of equations in a linear lattice. BUSEFAL 15: 88–96

    MATH  Google Scholar 

  • Drossos, C., & Navara, M. (1996). Generalized t-conorms and closure operators. In Proceedings of the Fourth European Congress on Intelligent Techniques and Sof Computing, EUFIT’96, Aachen, Germany, pp. 22–26.

  • Dubois D. and Prade H. (1980). New results about properties and semantics of fuzzy set-theoretic operators. In: Wang, P.P. and Chang, S.K. (eds) Fuzzy sets: Theory and applications to policy analysis and information systems, pp 59–75. Plenum Press, New York

    Google Scholar 

  • Dubois D. and Prade H. (1986). New results about properties and semantics of fuzzy set-theoretic operators. In: Wang, P.P. and Chang, S.K. (eds) Fuzzy sets: Theory and applications to policy analysis and information systems, pp 59–75. Plenum Press, New York

    Google Scholar 

  • Fang S.-C. and Li G. (1999). Solving fuzzy relation equations with a linear objective function. Fuzzy Sets and Systems 103: 107–113

    Article  MathSciNet  MATH  Google Scholar 

  • Fodor J.C. (1991). Strict preference relations based on weak t-norms. Fuzzy Sets and Systems 43: 327–336

    Article  MathSciNet  MATH  Google Scholar 

  • Frank M.J. (1979). On the simultaneous associativity of F(x,y) and x + yF(x,y). Aequationes Mathematicae 19: 194–226

    Article  MathSciNet  MATH  Google Scholar 

  • Gavalec M. (2001). Solvability and unique solvability of max-min fuzzy equations. Fuzzy Sets and Systems 124: 385–393

    Article  MathSciNet  MATH  Google Scholar 

  • Gavalec M. and Plávka J. (2003). Strong regularity of matrices in general max-min algebra. Linear Algebra and Its Applications 371: 241–254

    Article  MathSciNet  MATH  Google Scholar 

  • Ghodousian A. and Khorram E. (2006a). An algorithm for optimizing the linear function with fuzzy relation equation constraints regarding max-prod composition. Applied Mathematics and Computation 178: 502–509

    MathSciNet  MATH  Google Scholar 

  • Ghodousian A. and Khorram E. (2006b). Solving a linear programming problem with the convex combination of the max-min and the max-average fuzzy relation equations. Applied Mathematics and Computation 180: 411–418

    Article  MathSciNet  MATH  Google Scholar 

  • Ghodousian, A., & Khorram, E. (2007). Fuzzy linear optimization in the presence of the fuzzy relation inequality constraints with max-min composition. Information Sciences. doi:10.1016/j.ins.2007.07.022.

  • Goguen J.A. (1967). L-Fuzzy sets. Journal of Mathematical Analysis and Applications 18: 145–174

    Article  MathSciNet  MATH  Google Scholar 

  • Golumbic M.C. and Hartman I.B.-A. (2005). Graph theory, combinatorics and algorithms: Interdisciplinary applications. Springer-Verlag, New York

    MATH  Google Scholar 

  • Gottwald, S. (1984). T-normen und \({\phi}\) -operatoren als Wahrheitswertfunktionen mehrtiger junktoren. In G. Wechsung (Ed.), Frege Conference 1984, Proceedings of the International Conference held at Schwerin (GDR), Mathematical Research (Vol. 20, pp. 121–128). Berlin: Akademie-Verlag.

  • Gottwald S. (1986). Characterizations of the solvability of fuzzy equations. Elektron. Informationsverarb. Kybernet 22: 67–91

    MathSciNet  MATH  Google Scholar 

  • Gottwald S. (1993). Fuzzy sets and fuzzy logic: The foundations of application—from a mathematical point of view. Vieweg, Wiesbaden

    MATH  Google Scholar 

  • Gottwald S. (2000). Generalized solvability behaviour for systems of fuzzy equations. In: Novák, V. and Perfilieva, I. (eds) Discovering the world with fuzzy logic, pp 401–430. Physica-Verlag, Heidelberg

    Google Scholar 

  • Guo F.-F. and Xia Z.-Q. (2006). An algorithm for solving optimization problems with one linear objective function and finitely many constraints of fuzzy relation inequalities. Fuzzy Optimization and Decision Making 5: 33–47

    Article  MathSciNet  MATH  Google Scholar 

  • Gupta M.M. and Qi J. (1991). Design of fuzzy logic controllers based on generalized T-operators. Fuzzy Sets and Systems 40: 473–489

    Article  MathSciNet  MATH  Google Scholar 

  • Guu S.-M. and Wu Y.-K. (2002). Minimizing a linear objective function with fuzzy relation equation constraints. Fuzzy Optimization and Decision Making 1: 347–360

    Article  MathSciNet  MATH  Google Scholar 

  • Han S.C. and Li H.X. (2005). Note on “pseudo-t-norms and implication operators on a complete Brouwerian lattice” and “pseudo-t-norms and implication operators: Direct products and direct product decompositions”. Fuzzy Sets and Systems 153: 289–294

    Article  MathSciNet  MATH  Google Scholar 

  • Han S.C., Li H.X. and Wang J.Y. (2006). Resolution of finite fuzzy relation equations based on strong pseudo-t-norms. Applied Mathematics Letters 19: 752–757

    Article  MathSciNet  MATH  Google Scholar 

  • Han S.R. and Sekiguchi T. (1992). Solution of a fuzzy relation equation using a sign matrix. Japanese Journal of Fuzzy Theory and Systems 4: 160–171

    Google Scholar 

  • Higashi M. and Klir G.J. (1984). Resolution of finite fuzzy relation equations. Fuzzy Sets and Systems 13: 65–82

    Article  MathSciNet  MATH  Google Scholar 

  • Höhle U. (1995). Commutative residuated l-monoids. In: Höhle, U. and Klement, E.P. (eds) Non-classical logics and their applications to fuzzy subsets. A handbook of the mathematical foundations of fuzzy set theory, pp 53–106. Kluwer Academic Publishers, Boston

    Google Scholar 

  • Imai H., Kikuchi K. and Miyakoshi M. (1998). Unattainable solutions of a fuzzy relation equation. Fuzzy Sets and Systems 99: 195–196

    Article  MathSciNet  Google Scholar 

  • Imai H., Miyakoshi M. and Da-Te T. (1997). Some properties of minimal solutions for a fuzzy relation equation. Fuzzy Sets and Systems 90: 335–340

    Article  MathSciNet  MATH  Google Scholar 

  • Jenei S. (2001). Continuity of left-continuous triangular norms with strong induced negations and their boundary condition. Fuzzy Sets and Systems 124: 35–41

    Article  MathSciNet  MATH  Google Scholar 

  • Jenei S. (2002). Structure of left-continuous t-norms with strong induced negations, (III) Construction and decomposition. Fuzzy Sets and Systems 128: 197–208

    Article  MathSciNet  MATH  Google Scholar 

  • Kawaguchi M.F. and Miyakoshi M. (1998). Composite fuzzy relational equations with non-commutative conjunctions. Information Sciences 110: 113–125

    Article  MathSciNet  MATH  Google Scholar 

  • Khorram E. and Ghodousian A. (2006). Linear objective function optimization with fuzzy relation equation constraints regarding max-av composition. Applied Mathematics and Computation 173: 872–886

    Article  MathSciNet  MATH  Google Scholar 

  • Khorram E., Ghodousian A. and Abbasi Molai A. (2006). Solving linear optimization problems with max-star composition equation constraints. Applied Mathematics and Computation 179: 654–661

    Article  MathSciNet  MATH  Google Scholar 

  • Klement E.P., Mesiar R. and Pap E. (1999). Quasi- and pseudo-inverses of monotone functions, and the construction of t-norms. Fuzzy Sets and Systems 104: 3–13

    Article  MathSciNet  MATH  Google Scholar 

  • Klement E.P., Mesiar R. and Pap E. (2000). Triangular norms. Kluwer, Dordrecht

    MATH  Google Scholar 

  • Klement E.P., Mesiar R. and Pap E. (2004a). Triangular norms. Position paper I: Basic analytical and algebraic properties. Fuzzy Sets and Systems 143: 5–26

    Article  MathSciNet  MATH  Google Scholar 

  • Klement E.P., Mesiar R. and Pap E. (2004b). Triangular norms. Position paper II: General constructions and parameterized families. Fuzzy Sets and Systems 145: 411–438

    Article  MathSciNet  MATH  Google Scholar 

  • Klement E.P., Mesiar R. and Pap E. (2004c). Triangular norms. Position paper III: Continuous t-norms. Fuzzy Sets and Systems 145: 439–454

    Article  MathSciNet  MATH  Google Scholar 

  • Klir G. and Yuan B. (1995). Fuzzy sets and fuzzy logic: Theory and applications. Prentice Hall, Upper Saddle River, NJ

    MATH  Google Scholar 

  • Kolesárová A. (1999). A note on Archimedean triangular norms. BUSEFAL 80: 57–60

    Google Scholar 

  • Krause G.M. (1983). Interior idempotents and non-representability of groupoids. Stochastica 7: 5–10

    MathSciNet  MATH  Google Scholar 

  • Lettieri A. and Liguori F. (1984). Characterization of some fuzzy relation equations provided with one solution on a finite set. Fuzzy Sets and Systems 13: 83–94

    Article  MathSciNet  MATH  Google Scholar 

  • Lettieri A. and Liguori F. (1985). Some results relative to fuzzy relation equations provided with one solution. Fuzzy Sets and Systems 17: 199–209

    Article  MathSciNet  MATH  Google Scholar 

  • Li J.-X. (1990). The smallest solution of max-min fuzzy equations. Fuzzy Sets and Systems 41: 317–327

    Google Scholar 

  • Li J.-X. (1994). On an algorithm for solving fuzzy linear systems. Fuzzy Sets and Systems 61: 369–371

    Article  MathSciNet  MATH  Google Scholar 

  • Li P., Fang, S.-C. (2008). A survey on fuzzy relational equations, Part I: Classification and solvability. Fuzzy Optimization and Decision Making (submitted).

  • Li H.X., Miao Z.H., Han S.C. and Wang J.Y. (2005). A new kind of fuzzy relation equations based on inner transformation. Computers and Mathematics with Applications 50: 623–636

    Article  MathSciNet  MATH  Google Scholar 

  • Ling C.M. (1965). Representation of associative functions. Publicationes Mathematicae Debrecen 12: 189–212

    MathSciNet  Google Scholar 

  • Loetamonphong J. and Fang S.-C. (1999). An efficient solution procedure for fuzzy relation equations with max-product composition. IEEE Transactions on Fuzzy Systems 7: 441–445

    Article  Google Scholar 

  • Loetamonphong J. and Fang S.-C. (2001). Optimization of fuzzy relation equations with max-product composition. Fuzzy Sets and Systems 118: 509–517

    Article  MathSciNet  MATH  Google Scholar 

  • Loetamonphong J., Fang S.-C. and Young R. (2002). Multi-objective optimization problems with fuzzy relation equation constraints. Fuzzy Sets and Systems 127: 141–164

    Article  MathSciNet  MATH  Google Scholar 

  • Loia V. and Sessa S. (2005). Fuzzy relation equations for coding/decoding processes of images and videos. Information Sciences 171: 145–172

    Article  MathSciNet  MATH  Google Scholar 

  • Lu J. and Fang S.-C. (2001). Solving nonlinear optimization problems with fuzzy relation equation constraints. Fuzzy Sets and Systems 119: 1–20

    Article  MathSciNet  Google Scholar 

  • Luo Y. and Li Y. (2004). Decomposition and resolution of min-implication fuzzy relation equations based on S-implication. Fuzzy Sets and Systems 148: 305–317

    Article  MathSciNet  MATH  Google Scholar 

  • Luoh L., Wang W.J. and Liaw Y.K. (2002). New algorithms for solving fuzzy relation equations. Mathematics and Computers in Simulation 59: 329–333

    Article  MathSciNet  MATH  Google Scholar 

  • Luoh L., Wang W.J. and Liaw Y.K. (2003). Matrix-pattern-based computer algorithm for solving fuzzy relation equations. IEEE Transactions on Fuzzy Systems 11: 100–108

    Article  Google Scholar 

  • Markovskii A. (2004). Solution of fuzzy equations with max-product composition in inverse control and decision making problems. Automation and Remote Control 65: 1486–1495

    Article  MathSciNet  MATH  Google Scholar 

  • Markovskii A. (2005). On the relation between equations with max-product composition and the covering problem. Fuzzy Sets and Systems 153: 261–273

    Article  MathSciNet  MATH  Google Scholar 

  • Mayor G. and Torrens J. (1991). On a family of t-norms. Fuzzy Sets and Systems 41: 161–166

    Article  MathSciNet  MATH  Google Scholar 

  • Milterson P.B., Radhakrishnan J. and Wegener I. (2005). On converting CNF to DNF. Theoretical Computer Science 347: 325–335

    Article  MathSciNet  Google Scholar 

  • Miyakoshi M. and Shimbo M. (1985). Solutions of composite fuzzy relational equations with triangular norms. Fuzzy Sets and Systems 16: 53–63

    Article  MathSciNet  MATH  Google Scholar 

  • Miyakoshi M. and Shimbo M. (1986). Lower solutions of systems of fuzzy equations. Fuzzy Sets and Systems 19: 37–46

    Article  MathSciNet  MATH  Google Scholar 

  • Mordeson J.N. and Malik D.S. (2002). Fuzzy automata and languages: Theory and applications. Chapman & Hall/CRC, Boca Raton

    MATH  Google Scholar 

  • Mostert P.S. and Shields A.L. (1957). On the structure of semi-groups on a compact manifold with boundary. The Annals of Mathematics 65: 117–143

    Article  MathSciNet  Google Scholar 

  • Noskoá L. (2005). Systems of fuzzy relation equation with inf-→ composition: solvability and solutions. Journal of Electrical Engineering 12(s): 69–72

    Google Scholar 

  • Oden G.C. (1977). Integration of fuzzy logical information. Journal of Experimental Psychology, Human Perception and Performance 106: 565–575

    Article  Google Scholar 

  • Pandey, D. (2004). On the optimization of fuzzy relation equations with continuous t-norm and with linear objective function. In Proceedings of the Second Asian Applied Computing Conference, AACC 2004, Kathmandu, Nepal pp. 41–51.

  • Pappis C.P. and Sugeno M. (1985). Fuzzy relational equations and the inverse problem. Fuzzy Sets and Systems 15: 79–90

    Article  MathSciNet  MATH  Google Scholar 

  • Pedrycz, W. (1982a). Fuzzy control and fuzzy systems. Technical Report 82 14, Delft University of Technology, Department of Mathematics.

  • Pedrycz W. (1982b). Fuzzy relational equations with triangular norms and their resolutions. BUSEFAL 11: 24–32

    MATH  Google Scholar 

  • Pedrycz W. (1985). On generalized fuzzy relational equations and their applications. Journal of Mathematical Analysis and Applications 107: 520–536

    Article  MathSciNet  MATH  Google Scholar 

  • Pedrycz W. (1989). Fuzzy control and fuzzy systems. Research Studies Press/Wiely, New York, NY

    MATH  Google Scholar 

  • Pedrycz W. (1991). Processing in relational structures: Fuzzy relational equations. Fuzzy Sets and Systems 40: 77–106

    Article  MathSciNet  MATH  Google Scholar 

  • Pedrycz W. (2000). Fuzzy relational equations: bridging theory, methodolody and practice. International Journal of General Systems 29: 529–554

    Article  MathSciNet  MATH  Google Scholar 

  • Peeva K. (1985). Systems of linear equations over a bounded chain. Acta Cybernetica 7: 195–202

    MathSciNet  MATH  Google Scholar 

  • Peeva K. (1992). Fuzzy linear systems. Fuzzy Sets and Systems 49: 339–355

    Article  MathSciNet  MATH  Google Scholar 

  • Peeva K. (2006). Universal algorithm for solving fuzzy relational equations. Italian Journal of Pure and Applied Mathematics 9: 9–20

    MathSciNet  Google Scholar 

  • Peeva K. and Kyosev Y. (2004). Fuzzy relational calculus: Theory, applications and software. World Scientific, New Jersey

    MATH  Google Scholar 

  • Peeva K. and Kyosev Y. (2007). Algorithm for solving max-product fuzzy relational equations. Soft Computing 11: 593–605

    Article  MATH  Google Scholar 

  • Perfiliva I. and Tonis A. (2000). Compatibility of systems of fuzzy relation equations. International Journal of General Systems 29: 511–528

    Article  Google Scholar 

  • Prévot M. (1981). Algorithm for the solution of fuzzy relations. Fuzzy Sets and Systems 5: 319–322

    Article  MathSciNet  MATH  Google Scholar 

  • Rudeanu S. (1974). Boolean functions and equations. Amsterdam, North Holland

    MATH  Google Scholar 

  • Rudeanu S. (2001). Lattice functions and equations. Springer, London

    MATH  Google Scholar 

  • Sanchez, E. (1974). Equations de relation floues, Thèse de Doctorat, Faculté de Médecine de Marseille.

  • Sanchez E. (1976). Resolution of composite fuzzy relation equation. Information and Control 30: 38–48

    Article  MathSciNet  MATH  Google Scholar 

  • Sanchez E. (1977). Solutions in composite fuzzy relation equations: application to medical diagnosis in Brouwerian logic. In: Gupta, M.M., Saridis, G.N. and Gaines, B.R. (eds) Fuzzy automata and decision processes, pp 221–234. Amsterdam, North-Holland

    Google Scholar 

  • Schweizer B. and Sklar A. (1963). Associative functions and abstract semigroups. Plublicationes Mathematicae Debrecen 10: 69–81

    MathSciNet  Google Scholar 

  • Sessa S. (1984). Some results in the setting of fuzzy relation equations theory. Fuzzy Sets and Systems 14: 281–297

    Article  MathSciNet  MATH  Google Scholar 

  • Shi E.W. (1987). The hypothesis on the number of lower solutions of a fuzzy relation equation. BUSEFAL 31: 32–41

    MATH  Google Scholar 

  • Shieh B.-S. (2007). Solutions of fuzzy relation equations based on continuous t-norms. Information Sciences 177: 4208–4215

    Article  MathSciNet  MATH  Google Scholar 

  • Stamou G.B. and Tzafestas S.G. (2001). Resolution of composite fuzzy relation equations based on Archimedean triangular norms. Fuzzy Sets and Systems 120: 395–407

    Article  MathSciNet  MATH  Google Scholar 

  • Thole U., Zimmermann H.-J. and Zysno P. (1979). On the suitability of minimum and product operators for the intersection of fuzzy sets. Fuzzy Sets and Systems 2: 167–180

    Article  MATH  Google Scholar 

  • Van de Walle, De Baets, B., Kerre, E. (1998). A plea for the use of Łukasiewicz triples in the definition of fuzzy preference structures. Part I: General argumentation. Fuzzy Sets and Systems 97: 349–359

    Article  MATH  Google Scholar 

  • Wagenknecht M. and Hartmann K. (1990). On the existence of minimal solutions for fuzzy equations with tolerances. Fuzzy Sets and Systems 34: 237–244

    Article  MathSciNet  MATH  Google Scholar 

  • Wang H. F. (1995). A multi-objective mathematical programming problem with fuzzy relation constraints. Journal of Multi-Criteria Decision Analysis 4: 23–35

    Article  Google Scholar 

  • Wang X.P. (2001). Method of solution to fuzzy relational equations in a complete Brouwerian lattice. Fuzzy Sets and Systems 120: 409–414

    Article  MathSciNet  MATH  Google Scholar 

  • Wang X.P. (2003). Infinite fuzzy relational equations on a complete Brouwerian lattice. Fuzzy Sets and Systems 138: 657–666

    Article  MathSciNet  MATH  Google Scholar 

  • Wang X.P. and Xiong Q.Q. (2005). The solution set of a fuzzy relational equation with sup-conjunctor composition in a complete Brouwerian lattice. Fuzzy Sets and Systems 153: 249–260

    Article  MathSciNet  MATH  Google Scholar 

  • Wang H.F. and Hsu H.M. (1992). An alternative approach to the resolution of fuzzy relation equations. Fuzzy Sets and Systems 45: 203–213

    Article  MathSciNet  MATH  Google Scholar 

  • Wang P.Z., Sessa S., Di Nola A. and Pedrycz W. (1984). How many lower solutions does a fuzzy relation equation have?. BUSEFAL 18: 67–74

    MATH  Google Scholar 

  • Wang, P. Z., & Zhang, D.Z. (1987). Fuzzy decision making, Beijing Normal University Lectures, 1987.

  • Wang P.Z., Zhang D.Z., Sanchez E. and Lee E.S. (1991). Latticized linear programming and fuzzy relation inequalities. Journal of Mathematical Analysis and Applications 159: 72–87

    Article  MathSciNet  MATH  Google Scholar 

  • Wengener I. (1987). The complexity of Boolean functions. Wieley, New York

    Google Scholar 

  • Wu, Y.-K. (2006). Optimizing the geometric programming problem with max-min fuzzy relational equation constraints, Technical Report, Vanung University, Department of Industrial Management.

  • Wu Y.-K. (2007). Optimization of fuzzy relational equations with max-av composition. Information Sciences 177: 4216–4229

    Article  MathSciNet  MATH  Google Scholar 

  • Wu Y.-K. and Guu S.-M. (2004a). A note on fuzzy relation programming problems with max-strict-t-norm composition. Fuzzy Optimization and Decision Making 3: 271–278

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, Y.-K., & Guu, S.-M. (2004b). On multi-objective fuzzy relation programming problem with max-strict-t-norm composition, Technical Report, Yuan Ze University, Department of Business Administration.

  • Wu Y.-K. and Guu S.-M. (2005). Minimizing a linear function under a fuzzy max-min relational equation constraint. Fuzzy Sets and Systems 150: 147–162

    Article  MathSciNet  MATH  Google Scholar 

  • Wu Y.-K. and Guu S.-M. (2008). An efficient procedure for solving a fuzzy relational equation with max-Archimedean t-norm composition. IEEE Transactions on Fuzzy Systems 16: 73–84

    Article  Google Scholar 

  • Wu Y.-K., Guu S.-M. and Liu J.Y.-C. (2002). An accelerated approach for solving fuzzy relation equations with a linear objective function. IEEE Transactions on Fuzzy Systems 10: 552–558

    Article  Google Scholar 

  • Wu, Y.-K., Guu, S.-M., & Liu, J. Y.-C. (2007). Optimizing the linear fractional programming problem with max-Archimedean t-norm fuzzy relational equation constraints. In Proceedings of the IEEE International Conference on Fuzzy Systems, pp. 1–6.

  • Xiong Q.Q. and Wang X.P. (2005). Some properties of sup-min fuzzy relational equations on infinite domains. Fuzzy Sets and Systems 151: 393–402

    Article  MathSciNet  MATH  Google Scholar 

  • Xu, W.-L. (1978). Fuzzy relation equation. In Reports on Beijing Fuzzy Mathematics Meeting, 1978.

  • Xu W.-L., Wu C.-F. and Cheng W.-M. (1982). An algorithm to solve the max-min fuzzy relational equations. In: Gupta, M. and Sanchez, E. (eds) Approximate reasoning in decision analysis, pp 47–49. North-Holland, Amsterdam

    Google Scholar 

  • Yager R.R. (1982). Some procedures for selecting fuzzy set-theoretic operators. International Journal General Systems 8: 115–124

    Article  MathSciNet  MATH  Google Scholar 

  • Yang, J. H., & Cao, B. Y. (2005a). Geometric programming with fuzzy relation equation constraints. In Proceedings of the IEEE International Conference on Fuzzy Systems, pp. 557–560.

  • Yang, J. H., & Cao, B. Y. (2005b). Geometric programming with max-product fuzzy relation equation constraints. In Proceedings of Annual Meeting of the North American Fuzzy Information Processing Society, 2005, 650–653.

  • Yang J.H. and Cao B.Y. (2007). Posynomial fuzzy relation geometric programming. In: Melin, P., Castillo, O., Aguilar, L.T., Kacprzyk, J. and Pedrycz, W. (eds) Proceedings of the 12th International Fuzzy Systems Association World Congress, pp 563–572. Cancun, Mexico

    Google Scholar 

  • Yeh C.-T. (2008). On the minimal solutions of max-min fuzzy relational equations. Fuzzy Sets and Systems 159: 23–39

    Article  MathSciNet  Google Scholar 

  • Zhao C.K. (1987). On matrix equations in a class of complete and completely distributive lattice. Fuzzy Sets and Systems 22: 303–320

    Article  MathSciNet  MATH  Google Scholar 

  • Zimmermann H.-J. (2001). Fuzzy set theory and its applications (4th ed.). Kluwer, Boston

    Google Scholar 

  • Zimmermann K. (2007). A note on a paper by E. Khorram and A. Ghodousian. Applied Mathematics and Computation 188: 244–245

    Article  MathSciNet  MATH  Google Scholar 

  • Zimmermann H.-J and Zysno P. (1980). Latent connectives in human decision-making. Fuzzy Sets and Systems 4: 37–51

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pingke Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, P., Fang, SC. On the resolution and optimization of a system of fuzzy relational equations with sup-T composition. Fuzzy Optim Decis Making 7, 169–214 (2008). https://doi.org/10.1007/s10700-008-9029-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10700-008-9029-y

Keywords

Navigation