Skip to main content
Log in

A mixture of fuzzy filters applied to the analysis of heartbeat intervals

  • Published:
Fuzzy Optimization and Decision Making Aims and scope Submit manuscript

Abstract

This study provides a stochastic modeling of the heartbeat intervals using a mixture of Takagi–Sugeno type fuzzy filters. The model parameters are inferred under variational Bayes (VB) framework. The model of the heartbeat intervals is in the form of a history-dependent probability density. The parameters, characterizing the heartbeat intervals probability density, include the estimated parameters of different fuzzy filters and may serve as the features of the heartbeat interval series. The features of the heartbeat intervals provide a description of the physiological state of an individual. A novelty of our analysis method is that the physiological state is predicted as a part of the features extraction procedure. This is done via deriving, using VB paradigm, an analytical expression for the posterior distribution that the observed heartbeat intervals have been generated by the stochastic model of the physiological state. The method is illustrated with the data of 40 healthy subjects studied in a tilt-table experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akselrod S., Gordon D., Ubel F. A., Shannon D. C., Barger A. C., Cohen R. J. (1981) Power spectrum analysis of heart rate fluctuation: A quantitative probe of beat to beat cardiovascular control. Science 213: 220–222

    Article  Google Scholar 

  • Ancona N., Angelini L., Tommaso M. D., Marinazzo D., Nitti L., Pellicoro M., Stramaglia S. (2006) Measuring randomness by leave-one-out prediction error. Analysis of EEG after painful stimulation. Physica A Statistical Mechanics and its Applications 365(2): 491–498

    Article  Google Scholar 

  • Attias, H. (2000). A variational bayesian framework for graphical models. In Advances in Neural Information Processing Systems (Vol. 12, pp. 209–215). Cambridge: MIT Press.

  • Barbieri R., Brown E. N. (2006) Analysis of heartbeat dynamics by point process adaptive filtering. IEEE Transactions on Biomedical Engineering 53(1): 4–12

    Article  Google Scholar 

  • Barbieri R., Matten E. C., Alabi A. A., Brown E. N. (2005) A point-process model of human heartbeat intrervals: new definitions of heart rate and heart rate variability. American Journal of Physiology. Heart and Circulatory Physiology 288: H424–H435

    Article  Google Scholar 

  • Belova N. Y., Mihaylov S. V., Piryova B. G. (2007) Wavelet transform: A better approach for the evaluation of instantaneous changes in heart rate variability. Autonomic Neuroscience Basic and Clinical 131(1): 107–122

    Article  Google Scholar 

  • Bollt E. M., Skufca J. D., McGregor S. J. (2009) Control entropy: A complexity measure for nonstationary signals. Mathematical Biosciences and Engineering 6(1): 1–25

    Article  MathSciNet  MATH  Google Scholar 

  • Engin M. (2004) ECG beat classification using neuro-fuzzy network. Pattern Recognition Letters 25(15): 1715–1722

    Article  Google Scholar 

  • Ferrario M., Signorini M. G., Magenes G., Cerutti S. (2006) Comparison of entropy-based regularity estimators: Application to the fetal heart rate signal for the identification of fetal distress. IEEE Transactions on Biomedical Engineering 53(1): 119–125

    Article  Google Scholar 

  • Fukuda, O., Nagata, Y., Homma, K., & Tsuji, T. (2001). Evaluation of heart rate variability by using wavelet transformation and a recurrent neural network. In: 23rd Annual international conference of the IEEE engineering in medicine and biology (Vol. 2, pp. 1769–1772). Istanbul, Turkey

  • Gautama T., Mandic D. P., Hulle M. M. V. (2004) A novel method for determining the nature of time series. IEEE Transactions on Biomedical Engineering 51(5): 728–736

    Article  Google Scholar 

  • Han J. S., Bang W. C., Bien Z. Z. (2002) Feature set extraction algorithm based on soft computing techniques and its application to EMG pattern classification. Fuzzy Optimization and Decision Making 1(3): 269–286

    Article  MATH  Google Scholar 

  • Hornero R., Abásolo D., Jimeno N., Sánchez C. I., Poza J., Aboy M. (2006) Variability, regularity, and complexity of time series generated by schizophrenic patients and control subjects. IEEE Transactions on Biomedical Engineering 53(2): 210–218

    Article  Google Scholar 

  • Hornero R., Aboy M., Abásolo D., McNames J., Goldstein B. (2005) Interpretation of approximate entropy: Analysis of intracranial pressure approximate entropy during acute intracranial hypertension. IEEE Transactions on Biomedical Engineering 52(10): 1671–1680

    Article  Google Scholar 

  • Kumar M., Arndt D., Kreuzfeld S., Thurow K., Stoll N., Stoll R. (2008) Fuzzy techniques for subjective workload score modelling under uncertainties. IEEE Transactions on Systems, Man, and Cybernetics–Part B: Cybernetics 38(6): 1449–1464

    Article  Google Scholar 

  • Kumar, M., Stoll, N., Kaber, D., Thurow, K., & Stoll, R. (2007a). Fuzzy filtering for an intelligent interpretation of medical data. In Proceedings of IEEE International Conference on Automation Science and Engineering (CASE 2007) (pp. 225–230). Scottsdale, Arizona, USA

  • Kumar M., Stoll N., Stoll R. (2010) Variational Bayes for a mixed stochastic/deterministic fuzzy filter. IEEE Transactions on Fuzzy Systems, 18(4): 787–801

    Article  Google Scholar 

  • Kumar M., Stoll R., Stoll N. (2003a) Regularized adaptation of fuzzy inference systems. Modelling the opinion of a medical expert about physical fitness: An application. Fuzzy Optimization and Decision Making 2: 317–336

    Article  MATH  Google Scholar 

  • Kumar M., Stoll R., Stoll N. (2003b) Robust adaptive fuzzy identification of time-varying processes with uncertain data. Handling uncertainties in the physical fitness fuzzy approximation with real world medical data: An application. Fuzzy Optimization and Decision Making 2(3): 243–259

    Article  Google Scholar 

  • Kumar M., Stoll R., Stoll N. (2004a) Robust adaptive identification of fuzzy systems with uncertain data. Fuzzy Optimization and Decision Making 3(3): 195–216

    Article  MathSciNet  MATH  Google Scholar 

  • Kumar M., Stoll R., Stoll N. (2004b) Robust solution to fuzzy identification problem with uncertain data by regularization. Fuzzy approximation to physical fitness with real world medical data: An application. Fuzzy Optimization and Decision Making 3(1): 63–82

    Article  MathSciNet  MATH  Google Scholar 

  • Kumar, M., Weippert, M., Kreuzfeld, S., Stoll, N., & Stoll, R. (2009). A fuzzy filtering based system for maximal oxygen uptake prediction using heart rate variability analysis. In Proceedings of IEEE international conference on automation science and engineering (CASE 2009) (pp. 604–608). Bangalore, India

  • Kumar M. et al (2010) Fuzzy filtering for physiological signal analysis. IEEE Transactions on Fuzzy Systems, 18(1): 208–216

    Article  Google Scholar 

  • Kumar M., Weippert M., Vilbrandt R., Kreuzfeld S., Stoll R. (2007b) Fuzzy evaluation of heart rate signals for mental stress assessment. IEEE Transactions on Fuzzy Systems 15(5): 791–808

    Article  Google Scholar 

  • Lappalainen H., Miskin J. W. (2000) Ensemble learning. In: Girolami M. Advances in independent component analysis. Springer, Berlin

  • Lee J. W., Lee G. K. (2005) Design of an adaptive filter with a dynamic structure for ECG signal processing. International Journal of Control, Automation, and Systems 3(1): 137–142

    Google Scholar 

  • Leski J. M. (2005) TSK-fuzzy modeling based on ε-insensitive learning. IEEE Transactions on Fuzzy Systems 13(2): 181–193

    Article  Google Scholar 

  • Li Q., Mark R. G., Clifford G. D. (2008) Robust heart rate estimation from multiple asynchronous noisy sources using signal quality indices and a Kalman filter. Physiological Measurement 29(1): 15–32

    Article  Google Scholar 

  • Mandryk R. L., Atkins M. S. (2007) A fuzzy physiological approach for continuously modeling emotion during interaction with play technologies. International Journal of Human-Computer Studies 65(4): 329–347

    Article  Google Scholar 

  • Mastorocostas P. A., Tolias Y. A., Theocharis J. B., Hadjileontiadis L. J., Panas S. M. (2000) An orthogonal least squares-based fuzzy filter for real-time analysis of lung sounds. IEEE Transactions on Biomedical Engineering 47(9): 1165–1176

    Article  Google Scholar 

  • McNames J., Aboy M. (2008) Statistical modeling of cardiovascular signals and parameter estimation based on the extended Kalman filter. IEEE Transactions on Biomedical Engineering 55(1): 119–129

    Article  Google Scholar 

  • Montano N., Porta A., Cogliati C., Costantino G., Tobaldini E., Casali K. R., Iellamo F. (2009) Heart rate variability explored in the frequency domain: A tool to investigate the link between heart and behavior. Neuroscience & Biobehavioral Reviews 33(2): 71–80

    Article  Google Scholar 

  • Philips W. (1996) Adaptive noise removal from biomedical signals using warped polynomials. IEEE Transactions on Biomedical Engineering 43(5): 480–492

    Article  Google Scholar 

  • Plataniotis K. N., Androutsos D., Venetsanopoulos A. N. (1999) Adaptive fuzzy systems for multichannel signal processing. Proceedings of the IEEE 87(9): 1601–1622

    Article  Google Scholar 

  • Rani P., Sims J., Brackin R., Sarkar N. (2002) Online stress detection using psychophysiological signal for implicit human-robot cooperation. Robotica 20(6): 673–686

    Article  Google Scholar 

  • Rezek I. A., Roberts S. J. (1998) Stochastic complexity measures for physiological signal analysis. IEEE Transactions on Biomedical Engineering 45(9): 1186–1191

    Article  Google Scholar 

  • Sayed A. H. (2003) Fundamentals of adaptive filtering. Wiley, NY

    Google Scholar 

  • Tarvainen M. P., Ranta-Aho P. O., Karjalainen P. A. (2002) An advanced detrending method with application to HRV analysis. IEEE Transactions on Bio-Medical Engineering 49(2): 172–175

    Article  Google Scholar 

  • Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology: (1996) Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. European Heart Journal 17: 354–381

    Google Scholar 

  • Voss A., Schulz S., Schroeder R., Baumert M., Caminal P. (2009) Methods derived from nonlinear dynamics for analysing heart rate variability. Philosophical Transactions of the Royal Society A Mathematical, Physical and Engineering Sciences 367(1887): 277–296

    Article  MATH  Google Scholar 

  • Wilson G. F., Russell C. A. (2003) Operator functional state classification using multiple psychophysiological features in an air traffic control task. Human Factors 45(3): 381–389

    Article  Google Scholar 

  • Wilson G. F., Russell C. A. (2003) Real-time assessment of mental workload using psychophysiological measures and artificial neural networks. Human Factors 45(4): 635–643

    Article  Google Scholar 

  • Zhong Y., Jan K. M., Ju K. H., Chon K. H. (2007) Representation of time-varying nonlinear systems with time-varying principal dynamic modes. IEEE Transactions on Biomedical Engineering 54(11): 1983–1992

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohit Kumar.

Additional information

This work was supported by Center for Life Science Automation, Rostock, Germany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, M., Weippert, M., Stoll, N. et al. A mixture of fuzzy filters applied to the analysis of heartbeat intervals. Fuzzy Optim Decis Making 9, 383–412 (2010). https://doi.org/10.1007/s10700-010-9089-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10700-010-9089-7

Keywords

Navigation