Skip to main content
Log in

Comparison of 2-D and 3-D computer models for the M. Salta rock fall, Vajont Valley, northern Italy

  • Published:
GeoInformatica Aims and scope Submit manuscript

Abstract

A rock fall occurs when a fragment of rock is detached from a cliff and travels down-slope at high speed. Rock falls are a constant hazard in mountainous regions and pose a significant threat to the population. In this paper, a comparison of software designed to model rock falls is presented. The computer codes selected for the experiment are STONE and RocFall®. STONE is a research code for the 3-dimensional simulation of rock falls. RocFall® is commercial software widely used for the 2-dimensional simulation of rock falls along user defined topographic profiles. The two computer programs require similar input and provide comparable outputs, allowing for a quantitative evaluation of their modelling results. To compare the software, the Monte Salta rock fall, in northern Italy, was selected. Specific tests were designed to compare the ability of the software to predict the maximum travel distance of the falling boulders, and the distance from the ground of the computed rock fall trajectories. Results indicate that the two rock fall modelling codes provide similar—but not identical—results. In general, STONE computes higher and longer rock fall trajectories than RocFall®, and allows identifying a larger area as potentially affected by falling boulders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alejano LR, Pons B, Bastante FG, Alonso E, Stockhausen HW (2007) Slope geometry design as a means for controlling rockfalls in quarries. Int J Rock Mech Min Sci 44(6):903–921

    Article  Google Scholar 

  2. Bassato G, Cocco S, Silvano S (1985) Programma di simulazione per lo scoscendimento di blocchi rocciosi. Dendronatura 6(2):34–36

    Google Scholar 

  3. Crosta GB, Agliardi F (2004) Parametric evaluation of 3D dispersion of rockfall trajectories. Nat Hazards Earth Syst Sci 4:583–598

    Google Scholar 

  4. Descouedres F, Zimmermann T (1987) Three-dimensional dynamic calculation of rockfalls. Proceedings 6th International Congress of Rock Mechanics, Montreal, 337–342

  5. Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Shuster RL (eds) Landslides: investigation and mitigation, Transportation Research Board, Special Report 247. Washington D.C., pp 36–75

  6. Evans SG (1997) Fatal landslides and landslide risk in Canada. Proceedings International Workshop on Landslide Risk Assessment, Balkema, Rotterdam, pp 620–636

  7. Evans SG, Hungr O (1993) The assessment of rockfall hazard at the base of talus slopes. Can Geotech J 30:620–636

    Article  Google Scholar 

  8. Falcetta JL (1985) Un nouveau modèle de calcul de trajectoires de blocs rocheux. Revue Francaise de Geotechnique 30:11–17

    Google Scholar 

  9. Flageollet JC, Weber D (1996) Fall. In: Dikau R and others (eds) Landslide recognition, identification, movement and causes. Wiley, New York, pp 13–28

  10. Ghirotti M (1994) “L’antica frana del Monte Borgà e primi risultati del monitoraggio dell’area di Prà del Salta (Casso, PN)”, Atti del IV Convegno Nazionale dei Giovani Ricercatori in Geologia Applicata, Pitagora Editrice, Bologna

  11. Guzzetti F, Crosta GB, Detti R, Agliardi F (2002) STONE: a computer program for the three-dimensional simulation of rock-falls. Comput Geosci 28(9):1079–1093

    Article  Google Scholar 

  12. Guzzetti F, Reichenbach P, Ghigi S (2004) Rock-fall hazard and risk assessment in the Nera River Valley, Umbria Region, central Italy. Environ Manage 34(2):191–208

    Article  Google Scholar 

  13. Guzzetti F, Reichenbach P, Wieczorek GF (2003) Rockfall hazard and risk assessment in the Yosemite Valley, California, USA. Nat Hazards Earth Syst Sci 3(6):491–503

    Article  Google Scholar 

  14. Guzzetti F, Stark CP, Salvati P (2005) Evaluation of flood and landslide risk to the population of Italy. Environ Manage 36(1):15–36

    Article  Google Scholar 

  15. Lan H, Martin CD, Lim CH (2007) RockFall analyst: a GIS extension for three-dimensional and spatially distributed rockfall hazard modeling. Comput Geosci 33(2):262–279

    Article  Google Scholar 

  16. Hoek E (1987) Rockfall: a program in basic for the analysis of rockfalls from slopes. unpublished notes, Department of Civil Engineering, University of Toronto, Toronto

  17. Hungr O, Beckie RD (1998) Assessment of the hazard from rock fall on a highway: discussion. Can Geotech J 35:409

    Article  Google Scholar 

  18. Hungr O, Evans SG, Hazzard J (1999) Magnitude and frequency of rock falls and rock slides along the main transportation corridors of south-western British Columbia. Can Geotech J 36(2):224–238

    Article  Google Scholar 

  19. Jones CL, Higgins JD, Andrew RD (2000) Colorado Rockfall Simulation Program. Version 4.0. Colorado Department of Transportation, Colorado Geological Survey

  20. Kiersch GA (1964) Vajont reservoir disaster. Civ Eng 34:32–39

    Google Scholar 

  21. Paronuzzi P, Artini E (1999) Un nuovo programma in ambiente Windows per la modellazione della caduta massi. Geologia Tecnica e Ambientale 1/99:13–24

    Google Scholar 

  22. Pfeiffer TJ, Bowen T (1989) Computer simulation of rockfalls. Bull Assoc Eng Geol 26(1):135–146

    Google Scholar 

  23. Pfeiffer TJ, Higgins JD, Schultz R, Andrew RD (1991) Colorado Rockfall Simulation Program, Users Manual for Version 2.1: Colorado Department of Transportation, Denver

  24. Pierson LA, Davis SA, van Vickle R (1990) The Rockfall Hazard Rating System implementation manual. Oregon State Highway Division, Report FHWA-OR-EG-90-01, Washington D.C.

  25. Piteau DR, Clayton R (1976) Computer Rockfall Model. Proceedings Meeting on Rockfall Dynamics and Protective Works Effectiveness. Bergamo, Italy. ISMES Publication n. 90, Bergamo, pp 123–125

  26. Riva M, Besio M, Masetti D, Roccati F, Sapigni M, Semenza E (1990) Geologia delle valli Vaiont e Gallina (Dolomiti orientali). Annali dell'Università degli Studi di Ferrara 2(4):55–76

    Google Scholar 

  27. Rochet L (1987) Application des modèles numériques de propagation a l’étude des éboulements rocheux. Bulletin Liaison Pont Chaussée 150/151:84–95

    Google Scholar 

  28. RocScience (2002) RocFall user manual, Statistical analysis of Rockfalls. RocScience Inc.

  29. RocScience (2003) Determining input parameters for RocFall Analysis. RocNews, Fall 2003, Advanced Tutorial, RocScience Inc.

  30. Scioldo G (1991) La statistica Robust nella simulazione del rotolamento massi. Proceedings of the Meeting La meccanica delle rocce a piccola profondità, Torino, 319–323

  31. Stevens W (1998) RocFall: a tool for probabilistic analysis, design of remedial measures and prediction of rock falls, M.A.Sc. Thesis. Department of Civil Engineering, University of Toronto, Canada

  32. Ufficio Idrografico, Magistrato alle Acque di Venezia. “Carta geologica delle Tre Venezie”, Foglio 23–Belluno, 1:100,000 scale, Studio Cartografico Giardi, Firenze, 1941

  33. van Dijke JJ, van Westen CJ (1990) Rockfall hazard: a geomorphologic application of neighbourhood analysis with ILWIS. ITC J 1:40–44

    Google Scholar 

  34. Whalley WB (1984) Rockfalls. In: Brunsden D, Prior DB (eds) Slope instability. Wiley, New York, pp 217–256

    Google Scholar 

Download references

Acknowledgement

We are grateful to two anonymous referees for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Tagliavini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tagliavini, F., Reichenbach, P., Maragna, D. et al. Comparison of 2-D and 3-D computer models for the M. Salta rock fall, Vajont Valley, northern Italy. Geoinformatica 13, 323–337 (2009). https://doi.org/10.1007/s10707-008-0071-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10707-008-0071-2

Keywords

Navigation