Skip to main content
Log in

Parallel discriminative subspace for city target detection from high dimension images

  • Published:
GeoInformatica Aims and scope Submit manuscript

Abstract

City Target Detection is an enduring problem that intrigues the researchers all over the world. The great success of existing Target Detection algorithm appears in ubiquitous scenarios: Pedestrian Detection, Vehicle Tracking, etc. However, as for the city target detection in the remote sensing, we are facing with two inevitable problems: Complex Environment and Massive Information. The complicated environment encumbers the accurate extraction of the target profile, and the huge amount of information turns it into a heavy workload to get the final outcome for the conventional CPU- compiler architecture. In this paper, we propose a binary hypothesis framework based on adaptive dictionary and discriminative subspace for hyperspectral city target detection (BHADDS). Furthermore, we have also implemented it on other hardware platform alongside with CPU, such as FPGA. FPGA is a low-power portable and programmble SoC, and also the protocol model for potential massive production of the SoC chipset. Our eventual aim is heading for the high-performance processor with strong instant processing ability for remote sensing. In the final part of the paper, we have given a comprehensive performance comparison over the different platforms and summarized their applicable scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. An L, Wang W, Shang S, Li Q, Zhang X (2018) Efficient task assignment in spatial crowdsourcing with worker and task privacy protection. Geoinformatica 22(3):1–28

    Google Scholar 

  2. Chang CI (2002) Target signature-constrained mixed pixel classification for hyperspectral imagery. IEEE Trans Geosci Remote Sens 40(5):1065–1081

    Article  Google Scholar 

  3. Chang CI (2005) Orthogonal subspace projection (osp) revisited: a comprehensive study and analysis. IEEE Trans Geosci Remote Sens 43(3):502–518

    Article  Google Scholar 

  4. Chang CI (2000) Liu: generalized constrained energy minimization approach to subpixel target detection for multispectral imagery. Opt Eng 39(5):1275–1282

    Article  Google Scholar 

  5. Chen Y, Nasrabadi NM, Tran TD (2011) Simultaneous joint sparsity model for target detection in hyperspectral imagery. IEEE Geosci Remote Sens Lett 8(4):676–680. https://doi.org/10.1109/LGRS.2010.2099640

    Article  Google Scholar 

  6. Chen Y, Nasrabadi NM, Tran TD (2011) Sparse representation for target detection in hyperspectral imagery. IEEE J Sel Top Signal Process 5(3):629–640

    Article  Google Scholar 

  7. Cheng G, Han J (2016) A survey on object detection in optical remote sensing images. Isprs J Photogramm Remote Sens 117:11–28

    Article  Google Scholar 

  8. csguo: https://ww.cnblogs.com/csguo/p/7804355.html (2017)

  9. Dong Y, Du B, Zhang L, Zhang L (2017) Dimensionality reduction and classification of hyperspectral images using ensemble discriminative local metric learning. IEEE Trans Geosci Remote Sens 55(5):2509–2524

    Article  Google Scholar 

  10. Du B, Zhang L (2011) Random-selection-based anomaly detector for hyperspectral imagery. IEEE Trans Geosci Remote Sens 49(5):1578–1589

    Article  Google Scholar 

  11. Du B, Zhang Y (2016) Beyond the sparsity-based target detector: a hybrid sparsity and statistics-based detector for hyperspectral images. IEEE Trans Image Process 25(11):5345–5357

    Article  MathSciNet  MATH  Google Scholar 

  12. Du Q, Ren H, Chang CI (2003) A comparative study for orthogonal subspace projection and constrained energy minimization. IEEE Tans. Geosci Rem Sens 41(6):1525–1529

    Article  Google Scholar 

  13. Han J, Zhang D, Cheng G, Guo L, Ren J (2015) Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning. IEEE Trans Geosci Remote Sens 53(6):3325–3337

    Article  Google Scholar 

  14. Harsanyi JC, Chang CI (1994) Hyperspectralimage classiHcationand dimensionality reduction: An orthogonal subspace projection approach. IEEE Trans Geosci Remote Sens 320:779–785

    Article  Google Scholar 

  15. Jr F, Mersereau RM (2005) On the impact of pea dimension reduction for hyperspectral detection of difficult targets. IEEE Geosci Rem Sens Lett 2(2):192–195

  16. Keshava N, Mustard JF (2002) Spectral unmixing. IEEE Signal Process Mag 19(1):44–57

    Article  Google Scholar 

  17. Kwon H, Der SZ, Nasrabadi NM (2003) Dual-window-based anomaly detection for hyperspectral imagery. In: Automatic Target Recognition XIII. Int Soc Opt Photonics 5094:148–159

  18. Landgrebe D (2002) Hyperspectral image data analysis. IEEE Signal Process Mag 19(1):17–28

    Article  Google Scholar 

  19. Li W, Tramel EW, Prasad S, Fowler JE (2014) Nearest regularized subspace for hyperspectral classification. IEEE Trans Geosci Remote Sens 52(1):477–489

    Article  Google Scholar 

  20. Liu T, Tao D (2016) Classification with noisy labels by importance reweighting. IEEE Trans Pattern Anal Mach Intell 38(3):447–461

    Article  Google Scholar 

  21. Liu T, Tao D, Xu D (2016) Dimensionality-dependent generalization bounds for k- dimensional coding schemes. Neural Comput 28(10):1

    Article  MathSciNet  MATH  Google Scholar 

  22. LLLiuye: https://www.cnblogs.com/11iuye/p/9156763.html (2018)

  23. Lu T, Li S (2016) Spectral—spatial adaptive sparse representation for hyperspectral image denoising. IEEE Trans Geosci Remote Sens 54(1):373–385

    Article  MathSciNet  Google Scholar 

  24. Lu X, Yuan Y, Zheng X (2017) Joint dictionary learning for multispectral change detection. IEEE Trans Cybern 47(4):884–897

    Article  Google Scholar 

  25. Luo F, Hong H, Ma Z, Liu J (2016) Semisupervised sparse manifold discriminative analysis for feature extraction of hyperspectral images. IEEE Trans Geosci Rem Sens 54(10):6197–6211

    Article  Google Scholar 

  26. Ma B, Du Q (2013) Hyperspectral target detection with sparseness constraint. In: 2013 IEEE International Geoscience and Remote Sensing Symposium-IGARSS, pp. 1059— 1062. IEEE

  27. Manolakis (2009) Is there a best hyperspectral detection algorithm? In: Algorithms and technologies for multispectral, hyperspectral, and ultraspectral imagery XV, vol. 7334, p. 733402. International Society for Optics and Photonics

  28. Manolakis D, Marden D, Shaw GA (2003) Hyperspectral image processing for automatic target detection applications

  29. Manolakis DG, Shaw G (2002) Detection algorithms for hyperspectral imaging applications, sig proc mag ieee. Signal Process Mag IEEE 19(1):29–43

    Article  Google Scholar 

  30. Matteoli (2010) A tutorial overview of anomaly detection in hyperspectral images. IEEE Aerosp Electron Syst Mag 25(7):5–28

    Article  Google Scholar 

  31. Nasrabadi NM (2014) Hyperspectral target detection: An overview of current and future challenges. IEEE Signal Process Mag 31(1):34–44

    Article  Google Scholar 

  32. Niu Y, Wang B (2017) Extracting target spectrum for hyperspectral target detection: An adaptive weighted learning method using a self-completed background dictionary. IEEE Trans Geosci Remote Sens 55(3):1604–1617

    Article  Google Scholar 

  33. Pati, Y.C. (1993) Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition. In: Proceedings of 27th Asilomar conference on signals, systems and computers, pp. 40—44. IEEE

  34. Qian D, Ren H, Chang CI (2003) A comparative study for orthogonal subspace projection and constrained energy minimization. IEEE Trans Geosci Rem Sens 41(6):1525–1529

    Article  Google Scholar 

  35. Qian D, Wei W, May D, Younan NH (2010) Noise-adjusted principal component analysis for buried radioactive target detection and classification. IEEE Trans Nucl Sci 57(6):3760–3767

    Google Scholar 

  36. Scharf LL, Friedlander B (1994) Matched subspace detectors. IEEE Trans Signal Process 42(8):2146–2277

    Article  Google Scholar 

  37. Schweizer SM, Moura JM (2001) Efficient detection in hyperspectral imagery. IEEE Trans Image Process 10(4):584–597

    Article  MATH  Google Scholar 

  38. Shang S, Chen L, Jensen CS, Wen JR, Kalnis P (2017) Searching trajectories by regions of interest. IEEE Trans Knowl Data Eng 29(7):1549–1562

    Article  Google Scholar 

  39. Shang S, Chen L, Wei Z, Jensen CS, Kai Z, Kalnis P (2018) Parallel trajectory similarity joins in spatial networks. Vldb J 27(3):395–420

    Article  Google Scholar 

  40. Shang S, Chen L, Wei Z, Jensen CS, Kain is P (2016) Collective travel planning in spatial networks. IEEE Transactions on Knowledge Data Engineering 28(5):1132–1146

    Article  Google Scholar 

  41. Shang S, Chen L, Zheng K, Jensen CS, Wei Z, Kalnis P (2019) Parallel trajectory-to- location join. IEEE Trans Knowl Data Eng 31(6):1194–1207. https://doi.org/10.1109/TKDE.2018.28Ja05

    Article  Google Scholar 

  42. Shang S, Ding R, Kai Z, Jensen CS, Kalnis P, Zhou X (2014) Personalized trajectory matching in spatial networks. VLDB J 23(3):449–468

    Article  Google Scholar 

  43. Stefanou MS, Kerekes JP (2010) Image-derived prediction of spectral image utility for target detection applications. IEEE Trans Geosci Remote Sens 48(4):1827–1833

    Article  Google Scholar 

  44. Sun, J., Jiang, Y., Zeng, S.(2005) A study of pea image fusion techniques on remote sensing. In: International Conference on Space Information Technology

  45. Sun, X., Li, N., Zhao, H.J. (2008) Performance evaluation for hyperspectral target detection algorithms. In: Seventh International Symposium on Instrumentation and Control Technology: Sensors and Instruments, Computer Simulation, and Artificial Intelligence, vol. 7127, p. 712725. International Society for Optics and Photonics

  46. Tropp JA, Gilbert AC (2007) Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans Inf Theory 53(12):4655–4666

    Article  MathSciNet  MATH  Google Scholar 

  47. Wang T, Du B, Zhang L (2013) A kernel-based target-constrained interference-minimized filter for hyperspectral sub-pixel target detection. IEEE J Sel Top Appl Earth Obs Rem Sens 6(2):626–637

    Article  Google Scholar 

  48. Xu, J., Han, J. (2016) Robust and sparse fuzzy k-means clustering. In: IJCAI, pp. 2224—2230

  49. Yang S, Shi Z (2016) Hyperspectral image target detection improvement based on total variation. IEEE Trans Image Process 25(5):2249–2258

    Article  MathSciNet  MATH  Google Scholar 

  50. Yang X, Wu Z, Fu X, Zhan T, Wei Z (2016) A target detection method based on low-rank regularized least squares model for hyperspectral images. IEEE Geosc Rem Sens Lett 13(8):1129–1133

    Article  Google Scholar 

  51. Yuan Y, Zheng X, Lu X (2015) Spectral—spatial kernel regularized for hyperspectral image denoising. IEEE Trans Geosci Remote Sens 53(7):3815–3832

    Article  Google Scholar 

  52. Yue X, Xi M, Chen B, Gao M, He Y, Xu J (2019) A revocable group signatures scheme to provide privacy-preserving authentications. Mob Netw Appl

  53. Zhang L, Du B, Zhong Y (2010) Hybrid detectors based on selective endmembers. IEEE Trans Geosci Remote Sens 48(6):2633–2646

    Article  Google Scholar 

  54. Zhang Y, Du B, Zhang L (2015) A sparse representation-based binary hypothesis model for target detection in hyperspectral images. IEEE Trans Geosci Remote Sens 53(3):1346–1354

    Article  Google Scholar 

  55. Zhang Y, Du B, Zhang Y, Zhang L (2017) Spatially adaptive sparse representation for target detection in hyperspectral images. IEEE Geosci Remote Sens Lett 14(11):1923–1927

    Article  Google Scholar 

  56. Zhang Y, Ke W (2017) Independent encoding joint sparse representation and multitask learning for hyperspectral target detection. IEEE Geosci Remote Sens Lett 14(11):1933–1937

    Article  Google Scholar 

  57. Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J Royal Stat Soc: Series B (statistical methodology) 67(2):301–320

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

This work was supported in part by the National Key R & D Program of China under Grant 2018YFA060550 and the National Natural Science Foundation of China under Grants 41871243, the Natural Science Foundation of Hubei Province under Grants 2018CFA050, and the Science and Technology Major Project of Hubei Province (Next-Generation AI Technologies) under Grant 2019AEA170.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Du or Weiping Tu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhang, Y., Du, B. et al. Parallel discriminative subspace for city target detection from high dimension images. Geoinformatica 26, 299–322 (2022). https://doi.org/10.1007/s10707-020-00399-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10707-020-00399-7

Keywords

Navigation