Skip to main content
Log in

A grid-enabled asynchronous metamodel-assisted evolutionary algorithm for aerodynamic optimization

  • Original Paper
  • Published:
Genetic Programming and Evolvable Machines Aims and scope Submit manuscript

Abstract

A Grid-enabled asynchronous metamodel-assisted evolutionary algorithm is presented and assessed on a number of aerodynamic shape optimization problems. An efficient way of implementing surrogate evaluation models or metamodels (artificial neural networks) in the context of an asynchronous evolutionary algorithm is proposed. The use of metamodels relies on the inexact pre-evaluation technique already successfully applied to synchronous (i.e. generation-based) evolutionary algorithms, which needs to be revisited so as to efficiently cooperate with the asynchronous search method. The so-created asynchronous metamodel-assisted evolutionary algorithm is further enabled for Grid Computing. The Grid deployment of the algorithm relies on three middleware layers: GridWay, Globus Toolkit and Condor. Single- and multi-objective CFD-based designs of isolated airfoils and compressor cascades are handled using the proposed algorithm and the gain in CPU cost is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. E. Alba, M. Tomassini, Parallelism and evolutionary algorithms. IEEE Trans. Evol. Comput. 6, 443–462 (2002)

    Article  Google Scholar 

  2. V.G. Asouti, K.C. Giannakoglou, Aerodynamic optimization using a parallel asynchronous evolutionary algorithm controlled by strongly interacting demes. Eng. Optim. 41(3), 241–257 (2009)

    Article  MathSciNet  Google Scholar 

  3. J. Branke, C. Schmidt, Faster convergence by means of fitness estimation. Soft Comput. Fusion Found. Methodol. Appl. 9(1), 13–20 (2005)

    Google Scholar 

  4. D. Büche, N. Schraudolph, P. Koumoutsakos, Accelerating evolutionary algorithms with Gaussian process fitness function models. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 35(2), 183–194 (2005)

    Article  Google Scholar 

  5. L. Bull, On model-based evolutionary computation. Soft Comput. Fusion Found. Methodol. Appl. 3(2), 76–82 (1999)

    Article  Google Scholar 

  6. E. Cantú-Paz, A survey of parallel genetic algorithms. Calculateurs Paralleles, Reseaux et Systemes Repartis 10, 141–171 (1998)

    Google Scholar 

  7. D.J. Doorly, J. Peiró, S. Spooner, Design optimisation using distributed evolutionary methods, in 37th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA. AIAA-1999-111 (1999)

  8. M. Emmerich, A. Giotis, M. Özdemir, T. Bäck, K.C. Giannakoglou, Metamodel-assisted evolution strategies, in Parallel Problem Solving from Nature—PPSN VII. (Springer, Granada, 2002), pp. 361–370

  9. I. Foster, Globus toolkit version 4: software for service-oriented systems, in IFIP International Conference on Network and Parallel Computing, vol. 3779 (Springer, Berlin Heidelberg, 2006), pp. 2–13

  10. C.A. Georgopoulou, K.C. Giannakoglou, A multi-objective metamodel-assisted memetic algorithm with strength-based local refinement. Eng. Optim. 41(10), 909–923 (2009)

    Google Scholar 

  11. K.C. Giannakoglou, Designing turbomachinery blades using evolutionary methods. ASME paper 99-GT-181, 44th ASME Gas Turbine & Aeroengine Congress, Indianapolis, IN, USA, June (1999)

  12. K.C. Giannakoglou, Design of optimal aerodynamic shapes using stochastic optimization methods and computational intelligence. Prog. Aerosp. Sci. 38(1), 43–76 (2002)

    Article  Google Scholar 

  13. K.C. Giannakoglou, A.P. Giotis, M.K. Karakasis, Low-cost genetic optimization based on inexact pre-evaluations and the sensitivity analysis of design parameters. Inverse Probl. Eng. 9, 389–412 (2001)

    Article  Google Scholar 

  14. S. Haykin, Neural Networks: A Comprehensive Foundation (Prentice Hall, New Jersey, 1999)

    MATH  Google Scholar 

  15. Y. Jin, M. Olhofer, B. Sendhoff, A framework for evolutionary optimization with approximate fitness functions. IEEE Trans. Evol. Comput. 6(5), 481–494 (2002)

    Article  Google Scholar 

  16. I.C. Kampolis, K.C. Giannakoglou, A multilevel approach to single- and multiobjective aerodynamic optimization. Comput. Methods Appl. Mech. Eng. 197(33–40), 2963–2975 (2008)

    Article  Google Scholar 

  17. I.C. Kampolis, A.S. Zymaris, V.G. Asouti, K.C. Giannakoglou, Multilevel optimization strategies based on metamodel-assisted evolutionary algorithms, for computationally expensive problems, in 2007 Congress on Evolutionary Computation—CEC ’07 (Singapore, 2007)

  18. M.K. Karakasis, K.C. Giannakoglou, On the use of metamodel-assisted, multi-objective evolutionary algorithms. Eng. Optim. 38(8), 941–957 (2006)

    Article  MathSciNet  Google Scholar 

  19. M.K. Karakasis, A.P. Giotis, K.C. Giannakoglou, Inexact information aided, low-cost, distributed genetic algorithms for aerodynamic shape optimization. Int. J. Numer. Methods Fluids 43(10–11), 1149–1166 (2003)

    Article  MATH  Google Scholar 

  20. M.K. Karakasis, D.G. Koubogiannis, K.C. Giannakoglou, Hierarchical distributed evolutionary algorithms in shape optimization. Int. J. Numer. Methods Fluids 53(3), 455–469 (2007)

    Article  MATH  Google Scholar 

  21. P.I.K. Liakopoulos, I.C. Kampolis, K.C. Giannakoglou, Grid-enabled, hierarchical distributed metamodel-assisted evolutionary algorithms for aerodynamic shape optimization. Future Gener. Comput. Syst. 24(7), 701–708 (2008)

    Article  Google Scholar 

  22. D. Lim, Y.-S. Ong, Y. Jin, B. Sendhoff, B.-S. Lee, Efficient hierarchical parallel genetic algorithms using grid computing. Future Gener. Comput. Syst. 23(4), 658–670 (2007)

    Article  Google Scholar 

  23. F. Luna, A.J. Nebro, E. Alba, Observations in using grid-enabled technologies for solving multi-objective optimization problems. Parallel Comput. 32(5–6), 377–393 (2006)

    Article  MathSciNet  Google Scholar 

  24. Y. Mack, T. Goel, W. Shyy, R. Haftka, Surrogate model-based optimization framework: a case study in aerospace design, in Evolutionary Computation in Dynamic and Uncertain Environments, ed. by Y.-S. Ong, Y. Jin (Springer, Singapore, 2007)

  25. K. Mathioudakis, K.D. Papailiou, N. Neris, C. Bonhommet, G. Albrand, U. Wenger, An annular cascade facility for studying tip clearance effects in high speed flows, in XIII ISABE Conference (Chattanooga, Tennessee, USA, 1997)

  26. N. Melab, S. Cahon, E-G. Talbi, Grid computing for parallel bioinspired algorithms. J. Parallel Distrib. Comput. 66(8), 1052–1061 (2006)

    Article  MATH  Google Scholar 

  27. R.S. Montero, E. Huedo, I.M. Llorente, A framework for adaptive execution in grids. J. Softw. Pract. Exp. 34(7), 631–651 (2004)

    Article  Google Scholar 

  28. A.J. Nebro, E. Alba, F. Luna, Multi-objective optimization using grid computing. Soft Comput. 11(6), 531–540 (2007)

    Article  Google Scholar 

  29. M. Nowostawski, R. Poli, Parallel genetic algorithm taxonomy, in Third International Conference on Knowledge-based Intelligent Information Engineering Systems KES’99 (1999)

  30. Y.-S. Ong, P.B. Nair, A.J. Keane, Evolutionary optimization of computationally expensive problems via surrogate modeling. AIAA J. 41(4), 687–696 (2003)

    Article  Google Scholar 

  31. D.I. Papadimitriou, K.C. Giannakoglou, A continuous adjoint method with objective function derivatives based on boundary integrals for inviscid and viscous flows. Comput. Fluids 36(2), 325–341 (2007)

    Article  Google Scholar 

  32. D.I. Papadimitriou, K.C. Giannakoglou, Total pressure loss minimization in turbomachinery cascades using a new continuous adjoint formulation. Proc. I MECH E Part A J. Power Energy 221, 865–872 (2007)

    Article  Google Scholar 

  33. M. Papadrakakis, N.D. Lagaros, Y. Tsompanakis, Structural optimization using evolution strategies and neural networks. Comput. Methods Appl. Mech. Eng. 156(1–4), 309–333 (1998)

    Article  MATH  Google Scholar 

  34. S. Pierret, R.A. Van den Braembussche, Turbomachinery blade design using a Navier–Stokes solver and artificial neural network. J. Turbomach. 121(2), 326–332 (1999)

    Article  Google Scholar 

  35. C. Poloni, A. Giurgevich, L. Onesti, V. Pediroda, Hybridization of a multiobjective genetic algorithm, a neural network and a classical optimizer for a complex design problem in fluid dynamics. Comput. Methods Appl. Mech. Eng. 186(2), 403–420 (2000)

    Article  MATH  Google Scholar 

  36. T. Ray, W. Smith, A surrogate assisted parallel multiobjective evolutionary algorithm for robust engineering design. Eng. Optim. 38(8), 997–1011 (2006)

    Article  Google Scholar 

  37. P. Spalart, S. Allmaras, A one-equation turbulence model for aerodynamic flows. La Recherche Aerospatiale 1, 5–21 (1994)

    Google Scholar 

  38. R. Storn, K. Price, Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  39. D. Thain, T. Tannenbaum, M. Livny, Distributed computing in practice: the Condor experience. Concurr. Pract. Exp. 17(2–4), 323–356 (2005)

    Article  Google Scholar 

  40. M. Tomassini, Parallel and distributed evolutionary algorithms: a review, in Evolutionary Algorithms in Engineering and Computer Science—Recent Advances in Genetic Algorithms, Evolution Strategies, Evolutionary Programming, Genetic Programming and Industrial Applications, ed. by K. Miettinen, M.M. Mäkelä, P. Neittaanmäki, J. Périaux (Chichester, UK, 1999), pp. 113–133

  41. P. Troger, H. Rajic, A. Haas, P. Domagalski, Standardization of an API for distributed resource management systems, in CCGRID ’07: Proceedings of the Seventh IEEE International Symposium on Cluster Computing and the Grid (Washington, DC, 2007) pp. 619–626

  42. E. Zitzler, M. Laumanns, L. Thiele, SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization, in EUROGEN 2001, Evolutionary Methods for Design, Optimisation and Control with Application to Industrial Problems (Athens, 2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. C. Giannakoglou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asouti, V.G., Kampolis, I.C. & Giannakoglou, K.C. A grid-enabled asynchronous metamodel-assisted evolutionary algorithm for aerodynamic optimization. Genet Program Evolvable Mach 10, 373–389 (2009). https://doi.org/10.1007/s10710-009-9090-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10710-009-9090-5

Keywords

Navigation