Skip to main content
Log in

Metadata Management in the MoSGrid Science Gateway - Evaluation and the Expansion of Quantum Chemistry Support

  • Published:
Journal of Grid Computing Aims and scope Submit manuscript

Abstract

Science gateways are employed to hide increasingly complex IT infrastructures from users via easy-to-use graphical interfaces while enabling IT-driven research not possible before. The science gateway MoSGrid (Molecular Simulation Grid) is a valuable and user-friendly workbench to submit and process molecular simulation studies on a large scale. With regard to the needs of the users, we focus on the interoperability of simulations using two prominent quantum chemical codes, Gaussian09 and NWChem. At a first glimpse, the definition of functionals and basis sets seems to be sufficient to evoke the same type of calculation in both codes using the quantum chemical workflows in MoSGrid. In more detail, this is not true and more aspects such as integration grids, convergence criteria and basis set dimensions have to be well defined in order to obtain a trustworthy comparability between quantum chemical codes. In previous work, these details have not been defined and included in the MSML (Molecular Simulation Markup Language) implementation within MoSGrid. After the investigation presented here, all these details can be integrated to extend the quantum chemical workflows in MoSGrid. Furthermore, a performance evaluation of the underlying metadata management is performed to investigate its suitability and scalability to the MSML extension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aguilera, A., Grunzke, R., Markwardt, U., Habich, D., Schollbach, D., Garcke, J.: Towards an industry data gateway: An integrated platform for the analysis of wind turbine data. In: Science Gateways (IWSG), 2015 7th International Workshop on, pp. 62–66 (2015). 10.1109/IWSG.2015.8

  2. Allcock, W., Bresnahan, J., Kettimuthu, R., Link, M., Dumitrescu, C., Raicu, I., Foster, I.: The globus striped gridftp framework and server Proceedings of the 2005 ACM/IEEE conference on Supercomputing, p. 54. IEEE Computer Society (2005)

  3. Balaskó, Á. Workflow concept of ws-pgrade/guse. In: Kacsuk, P. (ed.) : Science gateways for distributed computing infrastructures, pp 33–50. Springer (2014)

  4. Becciani, U., Sciacca, E., Costa, A., Massimino, P., Pistagna, C., Riggi, S., Vitello, F., Petta, C., Bandieramonte, M., Krokos, M.: Science gateway technologies for the astrophysics community. Concurrency and Computation: Practice and Experience 27(2), 306–327 (2015)

    Article  Google Scholar 

  5. Costa, A., Massimino, P., Bandieramonte, M., Becciani, U., Krokos, M., Pistagna, C., Riggi, S., Sciacca, E., Vitello, F.: An innovative science gateway for the cherenkov telescope array. Journal of Grid Computing, 1–13 (2015)

  6. Dongarra, J., Beckman, P., Moore, T., Aerts, P., Aloisio, G., Andre, J.C., Barkai, D., Berthou, J.Y., Boku, T., Braunschweig, B., Cappello, F., Chapman, B., Chi, X., Choudhary, A., Dosanjh, S., Dunning, T., Fiore, S., Geist, A., Gropp, B., Harrison, R., Hereld, M., Heroux, M., Hoisie, A., Hotta, K., Jin, Z., Ishikawa, Y., Johnson, F., Kale, S., Kenway, R., Keyes, D., Kramer, B., Labarta, J., Lichnewsky, A., Lippert, T., Lucas, B., Maccabe, B., Matsuoka, S., Messina, P., Michielse, P., Mohr, B., Mueller, M.S., Nagel, W.E., Nakashima, H., Papka, M.E., Reed, D., Sato, M., Seidel, E., Shalf, J., Skinner, D., Snir, M., Sterling, T., Stevens, R., Streitz, F., Sugar, B., Sumimoto, S., Tang, W., Taylor, J., Thakur, R., Trefethen, A., Valero, M., Van Der Steen, A., Vetter, J., Williams, P., Wisniewski, R., Yelick, K.: The international exascale software project roadmap. Int. J. High Perform. Comput. Appl. 25(1), 3–60 (2011). doi:10.1177/1094342010391989

    Article  Google Scholar 

  7. Frisch, M., Trucks, G., Schlegel, H. B., Scuseria, G., Robb, M., Cheeseman, J., Scalmani, G., Barone, V., Mennucci, B., Petersson, G., et al.: Gaussian 09, revision a. 02, gaussian. Inc., Wallingford, CT 200 (2009)

  8. Gaussian: Gaussian 09 user’s refference. http://www.gaussian.com/g_tech/g_ur/g09help.htm (2015)

  9. Gesing, S., Grunzke, R., Krüger, J., Birkenheuer, G., Wewior, M., Schäfer, P., Schuller, B., Schuster, J., Herres-Pawlis, S., Breuers, S., Balaskó, Á., Kozlovszky, M., Fabri, A.S., Packschies, L., Kacsuk, P., Blunk, D., Steinke, T., Brinkmann, A., Fels, G., Müller-Pfefferkorn, R., Jäkel, R., Kohlbacher, O.: A single sign-on infrastructure for science gateways on a use case for structural bioinformatics. Journal of Grid Computing 10(4), 769–790 (2012). doi:10.1007/s10723-012-9247-y

    Article  Google Scholar 

  10. Gesing, S., Krüger, J., Grunzke, R., de la Garza, L., Herres-Pawlis, S., Hoffmann, A. Molecular simulation grid (mosgrid): A science gateway tailored to the molecular simulation community. In: Kacsuk, P. (ed.) : Science Gateways for Distributed Computing Infrastructures, pp. 151–165. Springer International Publishing (2014)

  11. Gottdank, T.: Introduction to the ws-pgrade/guse science gateway framework. In: Kacsuk, P. (ed.) Science Gateways for Distributed Computing Infrastructures, pp 19–32. Springer (2014)

  12. Grunzke, R., Breuers, S., Gesing, S., Herres-Pawlis, S., Kruse, M., Blunk, D., de la Garza, L., Packschies, L., Schäfer, P., Schärfe, C., Schlemmer, T., Steinke, T., Schuller, B., Müller-Pfefferkorn, R., Jäkel, R., Nagel, W.E., Atkinson, M., Krüger, J.: Standards-based Metadata Management for Molecular Simulations. Concurrency and Computation: Practice and Experience 26(10), 1744–1759 (2014). doi:10.1002/cpe.3116

    Article  Google Scholar 

  13. Grunzke, R., Gesing, S., Jäkel, R., Nagel, W.E.: Towards Generic Metadata Management in Distributed Science Gateway Infrastructures. In: IEEE/ACM CCGrid 2014 (14th International Symposium on Cluster, Cloud and Grid Computing), pp. 566–570. Chicago, IL, US (2014), 10.1109/CCGrid.2014.98

  14. Grunzke, R., Krüger, J., Gesing, S., Herres-Pawlis, S., Hoffmann, A., Aguilera, A., Nagel, W.E.: Managing complexity in distributed data life cycles enhancing scientific discovery (2015)

  15. gUSE: Available science gateways. http://guse.hu/portals/sg (2015)

  16. Hajnal, Á., Farkas, Z., Kacsuk, P.: Data avenue: remote storage resource management in WS-PGRADE/gUSE. In: 2014 6th International Workshop on Science Gateways (IWSG), pp 1–5. IEEE

  17. Hajnal, Á., Farkas, Z., Kacsuk, P., Pintér, T.: Remote storage resource management in WS-PGRADE/gUSE. In: Kacsuk, P. (ed.) Science Gateways for Distributed Computing Infrastructures, pp 69–81. Springer (2014)

  18. HBP: The human brain project https://www.humanbrainproject.eu (2015)

  19. Herres-Pawlis, S., Birkenheuer, G., Brinkmann, A., Gesing, S., Grunzke, R., Jäkel, R., Kohlbacher, O., Krüger, J., Dos Santos Vieira, I.: Workflow-enhanced conformational analysis of guanidine zinc complexes via a science gateway (2012)

  20. Herres-Pawlis, S., Hoffmann, A., Garza, L.D.L., Krüger, J., Grunzke, R.: Expansion of quantum chemical metadata for workflows in the mosgrid science gateway. In: Science Gateways (IWSG), 2014 6th International Workshop on, pp. 67–72 (2014), 10.1109/IWSG.2014.18

  21. Herres-Pawlis, S., Hoffmann, A., Grunzke, R., Packschies, L.: Orbital analysis of oxo and peroxo dicopper complexes via quantum chemical workflows in MoSGrid. In: Proceedings of the International Workshop on Scientific Gateways 2013 (IWSG) (2013)

  22. Hoffmann, A., Grunzke, R., Herres-Pawlis, S.: Insights into the influence of dispersion correction in the theoretical treatment of guanidine-quinoline copper(i) complexes. J. Comput. Chem. 35(27), 1943–1950 (2014). doi:10.1002/jcc.23706

    Article  Google Scholar 

  23. Hoffmann, A., Herres-Pawlis, S.: Hiking on the potential energy surface of a functional tyrosinase model - implications of singlet, broken-symmetry and triplet description. Chem. Commun. 50, 403–405 (2014). doi:10.1039/C3CC46893C

    Article  Google Scholar 

  24. Hoffmann, A., Rohrmüller, M., Jesser, A., dos Santos Vieira, I., Schmidt, W.G., Herres-Pawlis, S.: Geometrical and optical benchmarking of copper(ii) guanidine–quinoline complexes: Insights from td-dft and many-body perturbation theory (part ii). J. Comput. Chem. 35(29), 2146–2161 (2014). doi:10.1002/jcc.23740

    Article  Google Scholar 

  25. Jesser, A., Rohrmüller, M., Schmidt, W.G., Herres-Pawlis, S.: Geometrical and optical benchmarking of copper guanidine?quinoline complexes: Insights from td-dft and many-body perturbation theory. J. Comput. Chem. 35(1), 1–17 (2014). doi:10.1002/jcc.23449

    Article  Google Scholar 

  26. Jäkel, R., Müller-Pfefferkorn, R., Kluge, M., Grunzke, R., Nagel, W.E.: Architectural implications for exascale based on big data workflow requirements. In: Big Data and High Performance Computing, Advances in Parallel Computing, vol. 26, pp. 101–113. IOS Press (2015), 10.3233/978-1-61499-583-8-101

  27. Kacsuk, P.: Science gateways for distributed computing infrastructures springer (2014)

  28. Kacsuk, P., Farkas, Z., Kozlovszky, M., Hermann, G., Balasko, A., Karoczkai, K., Marton, I.: Ws-pgrade/guse generic dci gateway framework for a large variety of user communities. Journal of Grid Computing 10(4), 601–630 (2012). doi:10.1007/s10723-012-9240-5

    Article  Google Scholar 

  29. Kiss, T., Greenwell, P., Heindl, H., Terstyanszky, G., Weingarten, N.: Parameter sweep workflows for modelling carbohydrate recognition. Journal of Grid Computing 8(4), 587–601 (2010)

    Article  Google Scholar 

  30. Kozlovszky, M., Karóczkai, K., Márton, I., Kacsuk, P., Gottdank, T. Dci bridge: Executing ws-pgrade workflows in distributed computing infrastructures. In: Kacsuk, P. (ed.) : Science Gateways for Distributed Computing Infrastructures, pp 51–67. Springer (2014)

  31. Krüger, J., Grunzke, R., Gesing, S., Breuers, S., Brinkmann, A., de la Garza, L., Kohlbacher, O., Kruse, M., Nagel, W.E., Packschies, L., Müller-Pfefferkorn, R., Schärfer, P., Schärfe, C., Steinke, T., Schlemmer, T., Warzecha, K.D., Zink, A., Herres-Pawlis, S.: The mosgrid science gateway a complete solution for molecular simulations. J. Chem. Theory Comput. 10 (6), 2232–2245 (2014). doi:10.1021/ct500159h

    Article  Google Scholar 

  32. Liferay: Enterprise open source portal and collaboration software (2015). http://www.liferay.com/

  33. McCandless, M., Hatcher, E., Gospodnetic, O.: Lucene in Action: Covers Apache Lucene 3.0 Manning Publications Co (2010)

  34. Murray-Rust, P., Rzepa, H. S.: Chemical markup, xml, and the worldwide web. 1. basic principles. J. Chem. Inf. Comput. Sci. 39(6), 928–942 (1999)

    Article  Google Scholar 

  35. Noor, W., Schuller, B.: MMF: A flexible framework for metadata management in UNICORE. In: UNICORE Summit 2010 Proceedings, vol. 5, pp. 51–60 (2010)

  36. NWChem: 6.3 user documentation. http://www.nwchem-sw.org/images/NWChem6.3_Documentation.pdf (2015)

  37. NWChem: Density functional theory. http://www.nwchem-sw.org/index.php/Density_Functional_Theory_for_Molecules (2015)

  38. Olabarriaga, S. D., Benabdelkader, A., Caan, M. W., Jaghoori, M. M., Krüger, J., de la Garza, L., Mohr, C., Schubert, B., Danezi, A., Kiss, T. Ws-pgrade/guse-based science gateways in teaching. In: Kacsuk, P. (ed.) : Science Gateways for Distributed Computing Infrastructures, pp 223–234. Springer (2014)

  39. PRACE: Prace research infrastructure. http://www.prace-ri.eu/ (2015)

  40. Putz, M. V., Mingos, D.M.P.: Applications of density functional theory to biological and bioinorganic chemistry preface (2013)

  41. Rohrmüller, M., Herres-Pawlis, S., Witte, M., Schmidt, W.G.: Bis- μ-oxo and μ- η2: η2-peroxo dicopper complexes studied within (time-dependent) density-functional and many-body perturbation theory. J. Comput. Chem. 12, 1035–1045 (2013). doi:10.1002/jcc.23230

    Article  Google Scholar 

  42. Rolff, M., Schottenheim, J., Decker, H., Tuczek, F.: Copper–o 2 reactivity of tyrosinase models towards external monophenolic substrates: molecular mechanism and comparison with the enzyme. Chem. Soc. Rev. 40(7), 4077–4098 (2011)

    Article  Google Scholar 

  43. Sciacca, E., Vitello, F., Becciani, U., Costa, A., Massimino, P.: Visivo gateway and visivo mobile for the astrophysics community. In: Kacsuk, P. (ed.) Science Gateways for Distributed Computing Infrastructures, pp 181–194. Springer (2014)

  44. Shahand, S., Santcroos, M., van Kampen, A. H., Olabarriaga, S. D.: A grid-enabled gateway for biomedical data analysis. Journal of Grid Computing 10(4), 725–742 (2012)

    Article  Google Scholar 

  45. Solomon, E. I., Heppner, D. E., Johnston, E. M., Ginsbach, J. W., Cirera, J., Qayyum, M., Kieber-Emmons, M. T., Kjaergaard, C. H., Hadt, R. G., Tian, L.: Copper active sites in biology. Chem. Rev. 114(7), 3659–3853 (2014)

    Article  Google Scholar 

  46. Solomon, E. I., Scott, R. A., King, R. B.: Computational inorganic and bioinorganic chemistry John Wiley andamp; Sons (2013)

  47. Streit, A., Bala, P., Beck-Ratzka, A., Benedyczak, K., Bergmann, S., Breu, R., Daivandy, J. M., Demuth, B., Eifer, A., Giesler, A., et al.: Unicore 6 - recent and future advancements. Annals of Telecommunications-annales des Télécommunications 65(11-12), 757–762 (2010)

    Article  Google Scholar 

  48. Tao, J., Perdew, J. P., Staroverov, V. N., Scuseria, G. E.: Climbing the density functional ladder: Nonempirical meta–generalized gradient approximation designed for molecules and solids. Phys. Rev. Lett. 146–401(14) (2003)

  49. Valiev, M., Bylaska, E. J., Govind, N., Kowalski, K., Straatsma, T. P., Van Dam, H. J., Wang, D., Nieplocha, J., Apra, E., Windus, T. L., et al: Nwchem: a comprehensive and scalable open-source solution for large scale molecular simulations. Comput. Phys. Commun. 181(9), 1477–1489 (2010)

    Article  MATH  Google Scholar 

  50. Weigend, F., Ahlrichs, R.: Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for h to rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005). doi:10.1039/B508541A

    Article  Google Scholar 

  51. XSEDE: Extreme science and engineering discovery environment. https://www.xsede.org (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Richard Grunzke or Alexander Hoffmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grunzke, R., Krüger, J., Jäkel, R. et al. Metadata Management in the MoSGrid Science Gateway - Evaluation and the Expansion of Quantum Chemistry Support. J Grid Computing 15, 41–53 (2017). https://doi.org/10.1007/s10723-016-9362-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10723-016-9362-2

Keywords

Navigation