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Abstract

This paper investigates dynamics of a local search trajectory generated by running the Or-opt heuristic on the
traveling salesman problem. This study evaluates the dynamics of the local search heuristic by estimating the
correlation dimension for the search trajectory, and finds that the local heuristic search process exhibits the transition
from high-dimensional stochastic to low-dimensional chaotic behavior. The detection of dynamical complexity
for a heuristic search process has both practical as well as theoretical relevance. The revealed dynamics may cast
new light on design and analysis of heuristics and result in the potential for improved search process.
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1. Introduction

Combinatorial optimization studies hard optimization problems in which there can be many
possible solutions. In general, the primary task is to find the best element in a finite solution
set, with respect to some objective function. Many combinatorial optimization problems
are know to be NP-hard, which means that there is no known algorithm that can solve every
instance of this problem in a time growing less than a power of problem size, and it is
unlikely that such an algorithm can be found (Garey and Johnson, 1979; Papadimitriou,
1994). Researchers have used many strategies to tackle combinatorial optimization prob-
lems (Papadimitriou and Steigliz, 1999). The NP-completeness and intractability of com-
binatorial optimization problems have led many researchers to employ heuristic search
techniques. A heuristic seeks good solutions at a reasonable computational cost without
being able to guarantee either feasibility or optimality, or even in many cases to state how
close to optimality a particular feasible solutions is (Reeves, 1993).

There are three important aspects in the analysis of heuristics: search performance, time
complexity, and dynamical complexity. A large body of literature has been focused on mea-
surement of performance and determination of time complexity. The third aspect is related
to the behavior of the heuristic search process. There has been some work in studying search
mechanisms or problem structures over the past years to touch this aspect in this way or
another (Evans, 1987; Grover, 1992). Some researchers have been developing landscape
theory to study dynamics of landscapes (Kauffman and Levin, 1987; Weinberger, 1991).
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Here the landscape means the set of allowable configurations in some optimization problem.
The N − k model of Kauffman and Levin (1987) and Kauffman (1993) defines a family of
fitness landscapes. Heuristically, the N −k model is an attempt to understand the dependence
of a system with N elements, on a parameter k which measures how richly interconnected
the elements of the system are (Weinberger, 1991). Weinberger (1990) proposed the corre-
lation functions to define the correlation of points in the search space. Landscape theory has
emerged as an attempt to devise suitable mathematical structures for describing the “static”
properties of landscapes and their influence on the dynamics of adaptation, and for investi-
gating the connections of landscape theory with algebraic combinatorics and random graph
theory (Reidys and Stadler, 2002). The notion of fitness landscapes has been introduced to
describe the dynamics of heuristic search methods in optimization (Merz and Freisleben,
1999). Several researchers use fitness distance analysis to investigate the structure of fitness
landscapes (Macken, Hagan, and Perelson, 1991; Fontana et al., 1993), identify landscape
characteristics which influence the effectiveness of heuristic search methods (Jones and For-
rest, 1995), and prove convergence of simulated annealing (Sorkin, 1991). The landscape
theory focuses on the dynamics of landscapes, e.g. on the behavior of local optimization on
different configuration spaces.

However, the dynamics of heuristic search process is not well understood because the
complexity of the search process makes the phenomenon not amenable to simple anal-
ysis and leads to differing views on modeling techniques and analytical methods. The
major theme of this paper is to study the dynamical behavior of a particular search tra-
jectory in attempts to come to grips with the dynamical complexity of the search process.
Specifically, this study quantitatively characterizes the temporal dynamics of a local search
process by calculating the dimension of the local search trajectory. The dimensionality of
the search trajectory is closely related to the dynamics of the search process. A better un-
derstanding of the heuristic search behavior may result in the potential for improved search
heuristics.

2. The search trajectory

Since most heuristics are based upon intuition and involve randomness, the behavior of a
heuristic search process looks erratic, much like the behavior of a system strongly influenced
by random “noise” or the complicated behavior of a system with many degrees of freedom.
The technical approach of this study views the heuristic search process as a nonlinear
dynamical system. A heuristic search system takes a problem instance as input, use a
heuristic algorithm or hybrid algorithm to search for solutions, and outputs the best solution
found during the search process. All local search systems have the iterative descent property
when they apply to minimization problems. Typically, a local search algorithm starts off at
an initial configuration and then generates a sequence of iterations. Each iteration consists
of a possible transition from the current configuration ci to a new configuration c j selected
from the neighborhood N (ci ) of ci . If this neighboring configuration has a better score, the
current configuration is replaced by this better configuration; otherwise another neighboring
configuration is selected and compared with the current one. The process is repeated in this
fashion, generating a series of configurations. This neighborhood search property makes a
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local search system locally convergent, that is, it generates a sequence that converges to a
point that may be not an optimal configuration.

When describing a system, we usually utilize the “state” to model the dynamics of the
system. The state is a vector that sufficiently describes the condition of the process or the
position of the system in the state space. A state variable is the characteristic variable that
directly measures the internal dynamics of the system. A heuristic search system uses the
state to determine the possible changes in the position of configuration space or solution
space. For example, for the traveling salesman problem (TSP), the state variable is the
length associated with a tour, which is used to control the search process in the solution
space. The state variable is formulated in such a manner that at any point of time during
the search, it measures the performance of the search process in the current position of the
solution space.

Typically, a local heuristic search system selects an initial configuration c0, which is
measured by the state value s0, in the configuration space C . Then the system generates a
new configuration c1. If the state s1 of c1 has an improved value, the search process keeps
c1, and a new configuration c2 is generated from c1. If c1 does not have an improved state
value, the search process discards it. A new configuration c2 is still generated from c0.
The process is repeated and a new configuration c3 is generated and its state s3 is tested.
Continuing in this way, a sequence of state points S = {s0, s1, . . . , si , . . . , sn} is generated.
A trajectory is the path in state space followed by the process as it evolves with time.
The set S defines the search trajectory generated by a local search system in the state
space.

The behavior of a dynamical system is typically described by plotting its trajectory in a
state space. The general philosophy of this approach is to extract “physical sense” from an
experimental data. In fact, the geometrical object described by the points of the trajectory
is an infinite set of points (in practice we only use a subset data) in a d-dimension space.
However, many dynamical processes can be observed only through a time series, which
is a sequence of data representing the evolution of an observable quantity of the process,
indexed by time. Nonlinear dynamics theory shows that a set of sampled values of just one
variable can be sufficient to capture the features of a system’s dynamics (Tong and Lim,
1980). In other words, an observed time series often contains the dynamical information
of the experimental process, and one can reconstruct the information given in the time
series to present information about the whole system. In 1980, David Ruelle suggested
the idea of using the value of the coordinate with its values at two previous time, e.g.
s(t), s(t − τ ) and s(t − 2τ ), to represent the state space of a dynamical system in a 3-D
space (Packard et al., 1980), where τ is the time interval. This method, called time-delay
coordinates reconstruction, has been become a powerful analysis tool for investigating
dynamical systems in many scientific and research communities.

In general, we can provide the required coordinates to reconstruct the trajectory for a
dynamical system in dE dimensions (Abarbanel et al., 1993), where dE , called the embedding
dimension, denotes the dimension of the coordinates for the reconstructed trajectory. Rather
than considering s(t) as a sequence of single value, we group together dE successive values
for each time t in the time series, thus the vector

v(t) = [s(t), s(t + T ), s(t + 2T ), . . . , s(t + (dE − 1)T )] (1)
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Figure 1. Three-dimensional coordinates for vector v(t) = [s(t), s(t + T ), s(t + 2T )].

represents a point in a dE -dimensional space whose coordinates are just these dE val-
ues, where T denotes a time delay that must be a multiple of time interval. When we
plot these points in dE -dimensional space with connecting line segments, we can ob-
tain the reconstructed trajectory. The interesting feature of the time-delay reconstruction
is that the reconstructed trajectory in dE -dimension is topologically equivalent to the
actual trajectory of the system (Takens, 1981). For example, figure 1 illustrates a sys-
tem of 3-D time-delay coordinates on which the following sequence of vectors can be
plotted:

[s(0), s(T ), s(2T )]

[s(1), s(1 + T ), s(1 + 2T )]

[s(2), s(2 + T ), s(2 + 2T )] (2)

. . .

[s(t), s(t + T ), s(t + 2T )]

Theoretically, dynamical trajectories can always be faithfully reconstructed using this pro-
cedure (Takens, 1981).

The choice of the time-delay T is almost arbitrary (Takens, 1985; Casdagli et al., 1991).
However, in practice, if T is too small, the coordinates s(t) and s(t + T ) that we wish to use
in the reconstruction of data vector v(t) will not be independent enough. The resulting tra-
jectory will be close to the “diagonal” of the state space. On the other hand, if T is very large,
any connection between the measurement s(t) and s(t + T ) will be numerically subject to
being random with respect to each other. The reconstructed trajectory will appear to wander
all around space such that the structure of the trajectories is hard to detect. Thus, in practice,
the quality of the reconstruction depends on the value chosen for T . Therefore, some pre-
scription is needed to identify a proper time-delay T that is large enough that s(t) and s(t+T )
are quite independent, but not so large that they are completely independent in a statistical
sense. There are a number of suggested techniques for choosing T (Buzug, Reimers, and
Pfister, 1990). The average mutual information approach is a commonly-used method to
obtain a proper, but not necessarily optimal, time-delay T (Frazer and Swinney, 1986; Shaw,
1985).
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3. The dynamics of the heuristic search trajectory

3.1. The correlation dimension

In characterizing a dynamical process quantitatively, the emphasis usually is on the time-
dependent dynamical behavior of the system. One approach to characterize the temporal
dynamics of a system is to calculate the dimension of the process trajectory. The dimension-
ality of the process trajectory in a dynamical system is closely related to the dynamics of the
system (Hilborn, 1994). Dimensionality can be a measure of the complexity of a dynamical
system, which gives us an estimate of the number of active degrees of freedom in the system.
This study uses the correlation dimension technique to investigate the dynamical behav-
ior of a particular local search trajectory. In this way we can extract a multidimensional
description of dynamics of the local heuristic search system.

Generally speaking, the analysis of dynamical behavior is extremely difficult. In scien-
tific experiments, the behavior of an experimental system is usually ruled by k-coupled
autonomous differential equations, and the state space for the system is �k . Each vector
vi represents a possible state of the process. Of course, fundamental understanding of a
dynamical process can be achieved by building a dynamical model from the whole set of
differential equations. However, tracking the differential equations is not easy. In an exper-
imental setting, it is seldom the case that all relevant dynamical variables can be measured.
The set of coupled differential equations that governs the behavior of the process would
be unknown, or the dimension k of state space would be very large (Alligood, Sauer, and
Yorke, 1997). Thus, it is very difficult to fully model the dynamics of the process.

The determination of the fractal dimension of trajectory has become a standard diag-
nostic tool in the analysis of a dynamical system. The dynamical complexity of a system
can be described by the calculated dimension of its process trajectories. Most recent work
in characterizing dynamical process has focused on the evaluation of fractal dimension
by calculating the correlation dimension. The correlation dimension is originally due to
Grassberger and Procaccia (1983). It has become a popular technique because of its sim-
plicity, computational speed and minimal storage requirement.

The theoretical basis for the correlation dimension is the embedding theory, which de-
scribes the connections between system’s full state space, the measurements that comprise
a time series, and the reconstructed state space. Takens (1981) proposed a theorem showing
that the measurement in time series of a single variable suffices for the characterization
of the dynamics of the system evolving in a multivariable space. Takens’ Theorem is a
crucial development responsible for the realization that multidimensional state space could
be reconstructed from measurement of a single scalar time series. For detailed discussions
on the embedology theory and Taken’s Theorem, one can reference (Casdagli, Sauer, and
Yorke, 1991; Ott, Sauer, and Yorke, 1994; Takens, 1981).

Correlations between points on a trajectory are defined in terms of spatial correlation that
can be formally measured by the Euclidean distance. The correlation dimension considers
the statistics of distances between pairs of points (Parker and Chua, 1990). The procedure
of estimating the correlation dimension from a single variable time series is as follows
(Takens, 1985):
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(1) The time series are embedded in successively increasing dimensions. The series of
scalars is converted into a series of vectors in each embedding.

(2) For each embedding, the correlation integral C(r ) is computed and then the correlation
exponent k is estimated.

(3) The procedure is repeated until the estimates of k converge.
(4) Whatever value at which k remains stable over a number of embedding dimensions is

taken as the estimate of the correlation dimension DC of the underlying trajectory.

If a time series s(t), t = 1, 2, 3, . . . , is used to create the dE embedding dimension,
the series of single scalars is converted into a series of vectors with overlapping entries:
vt = [s(t), s(t +T ), s(t +2T ), . . . , s(t + (dE −1)T ]. Let V = {v0, v1, . . . , vn} be a trajectory
of the map f on �dE . One can measure the spatial correlation among the points on the
trajectory by calculating the correlation integral, C(r ). More specifically, for each r> 0, the
correlation function C(r ) is defined as the average number of pairs of data vectors (vi , v j )
which are separated by a distance less than r in the dE dimension.

C(r ) = lim
n→∞

1

n2
{the number of pairs (vi , v j ) such that ‖vi − v j‖ < r} (3)

where n denotes the number of points on the trajectory in the dE dimension. In principal n
should go infinity, but in practice n is limited by the availability of the time series points. This
places limits on possible values for r and dE . And ‖vi − v j‖ denotes the distance induced
by the selected norm. According to Theorem 2.4 of Brock (Brock, 1986), the correlation
dimension is independent of the choice of norm. Thus, the Euclidean distance is used in
this study.

Intuitively, C(r ) measures the probability that any particular pair of points in the trajectory
is close in the dE dimension. Grassberger and Procaccia (1983) have established that the
true spatial correlation grows according to the power law:

C(r ) ≈ rk (4)

where k is the correlation exponent. If k tends to be a constant as embedding dimension dE

increases, then k yields an estimate of the correlation dimension of the trajectory. In this
case, the trajectory is consistent with deterministic behavior. If k increases without bound
as the embedding dimension dE increases, this suggests that the trajectory is stochastic
as the dimension of the dynamical process approaches infinity. Therefore, the correlation
dimension Dc is defined to be the number that satisfies

C(r ) = r DC (5)

Then the correlation dimension Dc is obtained by

DC = ln C(r )

ln r
(6)
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In the Eq. (3), C(r ) is defined as function of r such that C(r ) increases from 0 to 1 as r
increases from 0 to ∞. In other words, if all pairs of points fall within the distance rof each
other, then C(r ) = 1. If r is smaller than the smallest distance between trajectory points,
then C(r ) = 0. Since any real data set consists of a finite number of points, it is not possible
to take the limits n → ∞. Hence, in practice the correlation dimension is found using some
range of r values and plotting lnC(r ) as a function of lnr . We can observe that only in some
intermediate r region does C(r ) obey the power law expressed in the equation (5) (Holzfuss
and Mayer-Kress, 1986). The region is called the scaling region, and the curve in this region
is approximately a straight line. The slope for the scaling region determines the correlation
dimension Dc for a particular dE .

Since in practice the presence of noise in the data is likely to result in a choppy appearance
in the verve of lnC(r ) versus lnr , one often needs to run a linear regression on the curve.
The slope estimate from this regression is the correlation dimension estimate for this value
of dE . Therefore, there are some uncertainties involved in calculating Dc, which can cause
the computed dimension to differ slightly from the “true” value.

This procedure is repeated for a sequence of increasing values of dE . If the time series are
purely random, then in an infinite data set, the correlation dimension will equal dE for all dE .
In practice, with a finite data set, the correlation dimension estimate may rise with dE at less
than a one-for-one rate (Ramsey and Yuan, 1987). If the time series are deterministic, the
correlation dimension Dc should initially increase with increasing values of dE . However,
at some point dE , it should level off and remain constant for all further values of dE . One
should observe a “plateau” on the plot of the correlation dimension C(r ) in the function of
embedding dimension dE . This “saturation” value of the slope is the correlation dimension
estimate for the underling system that generates the data. These relationships are illustrated
in figure 2.

In practice, the slope estimate may never completely stop rising. Thus, the process of
determining whether saturation has occurred can, in general, be rather judgmental. Ding et
al (1993) reported that, for large enough data set, the saturation begins when the number
of embedding dimension dE first exceeds the correlation Dc. However, a lack of sufficient

Figure 2. The correlation dimension for random and deterministic processes.
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data will delay the saturation onset. Takens’ embedding theorem provides a practical clue,
which shows that if the true system that generated the time series is in d dimension, the
embedding space need to have dE ≥ 2d + 1 dimension to capture completely the dynamics
of the underlying system. Since d is unknown, an increasing sequence of dE values must
be tried. Usually dE has to be increased to nearly 2d + 1 before the value deduced for d
become independent of dE .

3.2. The empirical results

In general, an instance of an optimization problem consists of all the inputs that are needed to
compute a solution to the problem and satisfies whatever constraints imposed in the problem
statement. This study chooses the TSP to serve as a problem testbed. The TSP is a NP-
complete problem that has provided much motivation for the development of complexity
theory. Given a set of n cities and an n × n distance matrix D in which d(i , j) denotes the
distance between city i and j , i , j = 1, . . . , n. A tour is a closed route that visits every city
exactly once. A salesman tries to find a tour with minimal total length.

When comparing a proposed approach with other approaches, many researchers use a
test instance drawn from a collection of publicly available cases with documented optimal
or best-known solutions, or they generate an instance of metric TSP in which the expected
length of a minimal tour for the TSP instance can be calculated by using an empirical
formula (Bonomi and Lutton, 1984). Since this study does not intend to solve a TSP, but
rather focuses on the analysis of search trajectory. To reduce computing time and storage
requirement, this study generates a general symmetric TSP instance, which consists of 1000
cities with distance d(i , j) independently drawn from a uniform distribution of the integers
over the interval [1, 1000].

There are a huge variety of local search algorithms for the TSP (Johnson, 1990). One of
the earliest applications of local search algorithms for the TSP is r -opt heuristics, where
r is the number of edges exchanged at each iteration. The larger the value of r , the more
likely it is that the final configuration is optimal. However, a large r requires the testing of a
large number of possible exchanges that increases the computing time rapidly. As a result,
2-opt, 3-opt and Lin-Kenighan algorithms are the ones that are most commonly used, in
which, respectively, two, three and a variable number of edges are exchanged (Lin, 1965;
Lin and Kernighan, 1973). This study chooses the Or-opt algorithm. The Or-opt heuristic
(Or, 1976) is a modified 3-opt heuristic which reduces the number of exchanges to be tested
by cutting a piece of route and inserting it between two other cities. For each connected
string of cities in the current tour, it is tested to see if it can be relocated between two other
cities at a reduced length.

When running the Or-opt search algorithm on the TSP instance, this study chooses an
initial tour at random and then carries out 10000 iterations. For the local search system
in this study, the values of tour length recorded at each iteration yield the sequence of
numbers:

l0 = s(t0), l1 = s(t1), . . . , li = s(ti ), . . . , l10000 = s(t10000) (7)
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Figure 3. The time series plot for the Or-opt heuristic search system on TSP.

where l0 is the length of an initial tour and li is the length of the tour at the i th iteration. If
we consider the length value as the state variable and one iteration as a time interval, this
sequence forms our experimental time series. For convenience, let D denote the data set of
10000 points l1, l2, . . . , l10000.

Figure 3 plots the time series D. In the horizontal axis the number of iteration (time) is
marked, while on the vertical axis the state values of solution are given for each iteration.
The plot shows an irregular curve with a certain amount of structure. The search pattern of
the heuristic search system shows a movement from a descending phase to a plateau phase,
indicating that the performance of the local heuristic search slows down as a local optimal
point is approached.

Additional knowledge concerning the dynamics of the heuristic search process can lurk in
the time series data. What is the dynamical complexity of the heuristic search process? The
behavior of a dynamical process is typically described by plotting its trajectories in a state
space. The reconstruction of a trajectory can be interpreted as a process of coordinate change.
Often the trajectory of a dynamical process is originally defined in some high-dimensional
space. The reconstruction amounts to a projection of the original to a smaller dimensional
Euclidean space. The goal of trajectory reconstruction is to capture the geometric pattern of
points on a trajectory of a dynamical system (Packard et al., 1980). Figure 4 uses the time-
delay-coordinates technique to reconstruct the search trajectory in dE = 3 dimension space,
using the same time series as shown in figure 3, through which the geometric structures
of the heuristic search trajectory are retrieved (Li, 1998). In figure 4, the plot (a) shows
the search trajectory of whole 10000 data points (data D), while the plot (b), (c) and (d)
present the parts of the search trajectories represented by the first 1000 iterations l1, l2, . . . ,
l1000, the 4000th–5000th iterations l4000, . . . , l5000, and the 8000th–9000th iterations l8000, . . . ,
l9000. The value of the time-delay T used in the plot (a) is 12, 6 in plot (b), 9 in plot (c)
and 14 in plot (d), which are calculated based on average mutual information (Li, 1998).
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Figure 4. The search trajectory of the Or-opt heuristic search process.

These portraits provide a geometric representation of complex dynamics of the local search
process. As shown in plot (b), the search trajectory has a loose structure at beginning of
the search, which means the search process has more opportunities to find better solutions
and thus has fast convergent speed. The middle part of the trajectory illustrated in plot (c)
shows that the structure becomes tight, which indicates that the process has to take longer
time searching neighbors to find a better solution. The lower part shown in plot (d) reveals
even tighter structure, like a thread ball, which means that the search activity is restricted
in an even smaller domain.

Figure 5 plots the ten curves that correspond to the computation of the natural logarithm
of the correlation integral as a function of lnr in the embedding dimension dE = 1, 2, . . . , 10
for the data D. The values of r are experimentally determined in the following manner. Let
RA represents the size of the trajectory under consideration, which can be obtained from
the following equation (Kennel et al., 1992):

RA =
√
√
√
√

1

n

n∑

t=1

[s(t) − s]
2

(8)

where n is the number of data points and

s = 1

n

n∑

t=1

s(t) (9)
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Figure 5. Correlation integers in different embedding dimension dE = 1, 2, . . . , 10 for the data D.

Then r is calculate as

r = RA · αk (10)

where the values of α and k were chosen experimentally to provide a range of values of r
that would encompass a nearly linear region of the curve. This study selected α = 0.8 by
using a trial-and-error program. The portion that lie within the range was calculated for r =
RA(0.8)0.2, RA(0.8)0.4, RA(0.8)0.6, . . . , RA(0.8)4, which made 20 points on the curve. In
this way, a series of correlation dimensions was calculated over 10 embedding dimensions
and plotted. Then the slope for each curve was found by the least squares regression and
displayed in the rightmost column in figure 5.

As a practical matter we search to see if the values of correlation dimension stabilize
at some value Dc as embedding dimension dE increases. If so, then the value Dc is the
correlation dimension estimate for the process. If a low value for Dc is found, then the
process is substantially deterministic even it is complicated. If, however, as dE increases the
correlation dimension continues to increase at the same rate, then the process is taken to
be stochastic. In principle, an independently and identically distributed stochastic system is
infinite dimensional. Each time one increases one available degree of freedom, the random
system utilizes that extra freedom. Therefore, it is desirable to calculate the correlation
dimension for a “random” system to provide a basis for comparison. Figure 6 compares
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Figure 6. Comparison of correlation dimensions between the heuristic time series D and the random data.

the correlation dimensions of the heuristic time series with the correlation dimensions of
a random data, which consists of 10000 data points that are uniformly distributed over the
interval [1, 1000]. As shown in figure 6, the correlation dimension for the time series of the
local heuristic search process stabilize when the embedding dimension is greater than about
twice the correlation dimension of the data, which indicates that the correlation dimension
becomes independent of dE . The saturated correlation dimension value Dc = 2.0145 for
the data D is determined at the corresponding dE = 5. For the random-number data, no
saturated correlation dimension can be found.

The correlation dimension estimate for the data D contains information about the dy-
namics of the local heuristic search process during its first 10000 search steps. In fact, this
single value describes an averaged property of the search process. In other words, this cor-
relation dimension is an average measure over the entire search trajectory (10000 points).
However, reviewing the time series plot in figure 3 and the search trajectories in figure 4,
one can clearly find that, in the heuristic search process, the descending phase has a dif-
ferent geometric structure from the plateau phase’s, which may indicate different levels of
dynamic complexity. The local contributions from different parts of the search trajectory to
the average dynamics are, in general, different. Just an average value does not acknowledge
all of the complexity of the search process. We ask what happen to the dynamics of the
search trajectory if we examine it at different parts. Thus, this study divides the 10000-point
trajectory into 10 parts, each consisting of 1000 points. It is expected that different parts of
the search trajectory to be characterized by different values of the correlation dimension. In
such a situation, a single value of some fractal dimension is not sufficient to characterize the
search trajectory adequately. According to its geometric appearance, the heuristic search
trajectory should be an object with a multiplicity of fractal dimension. Figure 7 shows a
schematic graph of the correlation dimension as a function of the embedding dimension for
five partitions of the heuristic time series. For comparison, the correlation dimension for a
1000-point random data is also plotted.

We can see that, although the curve of correlation dimension for the first 1000 data points
are below the curve for the random data, up to dE = 10, there is no sign of saturation,
indicating that the time series for this partition are indeed of high, if not infinite, dimension.
It indicates the presence of a stochastic search process during the first 1000 search steps.
However, the correlation dimension of search process decreases as the search continues,
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Figure 7. Correlation dimensions for the partitions of the heuristic search data and random data.

indicating that the complexity of search dynamics appears to decrease as the heuristic search
is approaching to a local optimal point. In summary, in the course of searching for an optimal
solution in the configuration space, the dynamics of the heuristic search process changes
from a stochastic process to a process with a low-dimensional structure.

4. Conclusions

This study investigates the complex nature of the dynamical behavior of the local heuris-
tic search process. This study uses the correlation dimension technique to quantitatively
characterize the dynamical complexity for a particular search trajectory. The results reveal
that the heuristic search process exhibits the transition from high-dimensional stochastic
to low-dimensional chaotic behavior. The initial phase of search process shows more com-
plexity in dynamics than the later phases of the search. The heuristic search process starts
with a high-dimensional searchable space. However, the dimension of the searchable space
is rapidly reduced. As the search is approaching to a local optimal point, the searchable
space becomes smaller and smaller. This decomplexification of search dynamics appears
to be generic response to perturbation associated with the solution configuration. A local
heuristic search process searches for an optimal configuration by repeatedly moving from
the current configuration to a neighboring configuration. In the early stage of search, the
frequency of this configuration perturbation is very high. However, the possibility of finding
a better configuration is less and less as the search goes on. Thus, the loss of complexity,
as assessed by the measurement of correlation dimension, can be related with this decreas-
ing possibility. The search process looks very much like passing through many levels of
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Table 1. Iterations and better solutions.

Iteration 1000-City 2000-City 4000-City

100 62 71 79

1,000 206 359 466

10,000 242 444 659

100,000 250 471 776

1,000,000 250 476 830

laminar. The search begins with a large laminar with many corridors. It is very easy for the
process to find a corridor to pass through to next laminar, which is characterized by smaller
size and less corridors. Every time the search process gets into a new laminar, it will take
a longer time to find a corridor to pass through to the next laminar. The closer to a local
optimal point, the longer the average laminar time will take. One issue related with the loss
of complexity is the size of solution space that can be effectively searched. Many degrees
of freedom N on the first laminar are reduced to a few degrees of freedom n (n � N ) on
the later laminars. Average over the residual degrees of freedom (N −n) is increased by the
restriction of neighborhoods. The size of solution space that can be reached may decrease
exponentially.

This decreasing size of the solution space perhaps can be modeled to describe the search
effectiveness for a heuristic search process. Usually, the more iterations we perform the
better final solution we can get. But how many iterations are enough? It is perhaps somewhat
surprising that there does not yet exist a useful convergence theory for this question. Let us
assume that after, say 175321 iterations, we found another better solution. However, is it
the last one we will find if we continue to iterate? There is no way to tell. However, still we
must make a decision. For example, we can propose to perform another 10000 iterations,
and if we do not find any more new better solution, we may be content and stop the iteration.
However, probably only the next iteration beyond the 10000 may prove that we are wrong in
this assumption. Table 1 illustrates the results of an experiment. This experiment applies the
Or-opt algorithm on three uniformly distributed TSP instances with 1000, 2000, and 4000
cities, respectively. One million iterations are performed on each instance. The number of
better solutions found (i.e. the times of solution configuration perturbations) during 10k

(k = 2, 3, . . . , 6) iterations is recorded.
We can see that, for example, for the 1000-city instance, 242 better solutions are found

in the first 10000 iterations and another eight better solutions in the next 90000 iterations,
but no more better solutions found in the next 900000 iterations. In the 2000-city case, 471
better solutions are found in the first 100000 iterations and another five better solutions in
the next 900000. How many more iterations should we perform to produce one more better
solution? Even if the case of simple local search iterations are very cheap, for a very large
problem instance, the number of iterations needed for a satisfied solution may be typically
in the order of tens of millions. For many other more sophisticated search heuristics, one
million iterations may be well above any reasonable computational time frame. Thus, the
problem outlined above really exists in practice, and a solution should be sought. We have
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known that this problem may be associated with the loss of complexity in the search process.
Correlation dimension technique may help us to capture the relevant frequencies or time
scales for a particular heuristic search process on a particular problem. Then, an expected
number of better solution (B) found during n iterations, given the size of the problem (s),
may be predicted by a map B = f (n, s). Such a search effectiveness model may answer
the question whether we are finding an adequate solution within a time acceptable to the
situation, for this size of problem instance, when using this particular search heuristic. Thus,
if a heuristic user can expect how many better solutions will be produced during the next,
say 100000 iterations, one has great flexibility in deciding whether or not to trade solution
quality for time.

Although this study investigates the dynamical behavior of the Or-opt heuristic on the
TSP, the result appears to be behavioral archetypes for the class of local search heuristics in
combinatorial optimization problems generally. There is no strict mathematical definition
to describe the behavior of the heuristic search process concisely. The process exhibits
complicated patterns in both space and time. Suppose that, for a heuristic search system, the
initial conditions are confined to some volume V in solution space bounded by a “surface”
of all initial points. As the search process evolves, the volume V will move through solution
space, which looks like a movement of a compressible object. The shape of the volume will
be distorted, and the size will be decreased. The final volume occupied by the set of local
optimal points is very small. This small volume is called a solution attractor in the solution
space. All search trajectories will be attracted to this volume. In fact, there are two competing
effects present in the heuristic search process. In one, due to the sensitive dependence on
initial conditions, two different search trajectories will diverge. On the other hand, the
trajectories must converge to a finite region of the solution space. This region is fixed. It is
clear that the initial segment of search trajectory is a kind of “coherent randomness.” This
randomness is subdued by some modulation. After certain search iterations, this randomness
is quickly replaced by a low-dimensional mode of chaos. Then, the search process continues
to be suppressed slowly by the modulation over a long period of time. Finally, when the
system reaches some local optimal configuration, the chaos is replaced by a quasi-periodic
mode of motion.

In the classical picture of statistical mechanics, it is believed that a large number of
degrees of freedom are necessary for ergodicity (Kuramoto, 1984). When a heuristic search
process is in the stochastic movement stage, it has the ability to explore wide regions of the
solution space, and thus to utilize information about a large collection of potential solutions
of the process. When the process gets into the chaotic stage with a few degrees of freedom,
it explores a very limited domain of solution space. The search activity now is rather
restrictive. The distribution of solution space being searched is far from “equipartition”
and is replete with high-probable regions. In summary, a local search process can start
from different initial points in solution space and finally wind up at a small attracting
region in the solution space. No wonder Boese et al. (1994) found a “big valley” structure
governing the set of local optima. Their research shows the evidence that “very good
solutions are located near other good solutions.” In fact, it is the attracting region that
creates a globally convex structure for the set of local optima in the optimization solution
space.
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This type of asymptotic behavior of the heuristic search process can have distinct impli-
cations for a wide range of theoretical and practical problems in heuristic theory, design and
analysis. For example, this dynamical property of heuristic search can probably be applied
to an emerging search methodology: hyper-heuristics. Hyper-heuristics are an approach that
chooses between heuristics in order to solve a given optimization problem (Burke et al.,
2003; Burke, Kendall, and Soubeiga, 2003; Cowling, Kendall, and Soubeig, 2001; Gaw,
Rattadilok, and Kwan, 2004). A hyper-heuristic consists of a set of low-level heuristics
and a high level selector. The hyper-heuristic manages the choice of which lower-level
heuristic method should be applied at any given time, depending upon the characteristics
of the heuristics and the region of the solution space currently under exploration. In some
hyper-heuristic approaches, a choice function is used to decide which heuristic to call next
(Cowling, Kendall, and Soubeig, 2001). This is calculated based on information derived
from recently called low-level heuristics, such as the recent improvement of each individual
heuristic, the recent improvement of each pair of heuristics, and the CPU time used by each
heuristic. The dynamics of a search trajectory can be used in the choice function.
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