Skip to main content
Log in

PSO-based and SA-based metaheuristics for bilinear programming problems: an application to the pooling problem

  • Published:
Journal of Heuristics Aims and scope Submit manuscript

Abstract

Bilinear programming problems (BLP) are subsets of nonconvex quadratic programs and can be classified as strongly NP-Hard. The exact methods to solve the BLPs are inefficient for large instances and only a few heuristic methods exist. In this study, we propose two metaheuristic methods, one is based on particle swarm optimization (PSO) and the other is based on simulated annealing (SA). Both of the proposed approaches take advantage of the bilinear structure of the problem. For the PSO-based method, a search variable, which is selected among the variable sets causing bilinearity, is subjected to particle swarm optimization. The SA-based procedure incorporates a variable neighborhood scheme. The pooling problem, which has several application areas in chemical industry and formulated as a BLP, is selected as a test bed to analyze the performances. Extensive experiments are conducted and they indicate the success of the proposed solution methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aarts, E., Korst, J., Michiels, W.: Simulated annealing. In: Search Methodologies, pp. 187–210. Springer (2005)

  • Adhya, N., Tawarmalani, M., Sahinidis, N.V.: A lagrangian approach to the pooling problem. Ind. Eng. Chem. Res. 38(5), 1956–1972 (1999)

    Article  Google Scholar 

  • Al-Khayyal, F.A.: Linear, quadratic, and bilinear programming approaches to the linear complementarity problem. Eur. J. Oper. Res. 24(2), 216–227 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  • Al-Khayyal, F.A.: Jointly constrained bilinear programs and related problems: An overview. Comput. Math. Appl. 19(11), 53–62 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Al-Khayyal, F.A.: Generalized bilinear programming: Part i. models, applications and linear programming relaxation. Eur. J. Oper. Res. 60(3), 306–314 (1992)

    Article  MATH  Google Scholar 

  • Alarie, S., Audet, C., Jaumard, B., Savard, G.: Concavity cuts for disjoint bilinear programming. Math. Program. 90(2), 373–398 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Alfaki, M.: Models and solution methods for the pooling problem. Ph.D. thesis, The University of Bergen (2012)

  • Alfaki, M., Haugland, D.: A cost minimization heuristic for the pooling problem. Ann. Oper. Res., 1–15 (2013a)

  • Alfaki, M., Haugland, D.: Strong formulations for the pooling problem. J. Glob. Optim. 56(3), 897–916 (2013b)

    Article  MathSciNet  MATH  Google Scholar 

  • Ali, M.M., Törn, A., Viitanen, S.: A direct search variant of the simulated annealing algorithm for optimization involving continuous variables. Comput. Oper. Res. 29(1), 87–102 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Almutairi, H., Elhedhli, S.: A new lagrangean approach to the pooling problem. J. Glob. Optim. 45(2), 237–257 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Audet, C., Hansen, P., Jaumard, B., Savard, G.: A symmetrical linear maxmin approach to disjoint bilinear programming. Math. Program. 85(3), 573–592 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Audet, C., Brimberg, J., Hansen, P., Digabel, S.L., Mladenović, N.: Pooling problem: Alternate formulations and solution methods. Manag. Sci. 50(6), 761–776 (2004)

    Article  MATH  Google Scholar 

  • Audet, C., Hansen, P., Le Digabel, S.: Exact solution of three nonconvex quadratic programming problems. Springer, New York (2004)

    Book  MATH  Google Scholar 

  • Ben-Tal, A., Eiger, G., Gershovitz, V.: Global minimization by reducing the duality gap. Math. Program. 63(1–3), 193–212 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Bohachevsky, I.O., Johnson, M.E., Stein, M.L.: Generalized simulated annealing for function optimization. Technometrics 28(3), 209–217 (1986)

    Article  MATH  Google Scholar 

  • Byrd, R.H., Nocedal, J., Waltz, R.A.: Knitro: an integrated package for nonlinear optimization. In: Large-Scale Nonlinear Optimization, pp. 35–39. Springer (2006)

  • Černỳ, V.: Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm. J. Optim. Theory Appl. 45(1), 41–51 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  • Chatterjee, A., Siarry, P.: Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization. Comput. Oper. Res. 33(3), 859–871 (2006)

    Article  MATH  Google Scholar 

  • Corana, A., Marchesi, M., Martini, C., Ridella, S.: Minimizing multimodal functions of continuous variables with the “simulated annealing” algorithm. ACM Trans. Math. Softw. 13(3), 262–280 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Dekkers, A., Aarts, E.: Global optimization and simulated annealing. Math. Program. 50(1–3), 367–393 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, vol. 1, pp. 39–43. New York (1995)

  • Eberhart, R.C., Shi, Y.: Comparison between genetic algorithms and particle swarm optimization. In: Evolutionary Programming VII, pp. 611–616. Springer (1998)

  • Erbeyoğlu, G.: Metaheuristic approaches to the pooling problem. Master’s thesis, Boğaziçi University (2013)

  • Evans, D.H.: Modular design—a special case in nonlinear programming. Oper. Res. 11(4), 637–647 (1963)

    Article  MATH  Google Scholar 

  • Floudas, C.A., Aggarwal, A.: A decomposition strategy for global optimum search in the pooling problem. ORSA J. Comput. 2(3), 225–235 (1990)

    Article  MATH  Google Scholar 

  • Foulds, L.R., Haugland, D., Jörnsten, K.: A bilinear approach to the pooling problem. Optimization 24(1–2), 165–180 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Frimannslund, L., El Ghami, M., Alfaki, M., Haugland, D.: Solving the pooling problem with lmi relaxations. Models and Solution Methods for the Pooling Problem (2012)

  • Gounaris, C.E., Misener, R., Floudas, C.A.: Computational comparison of piecewise-linear relaxations for pooling problems. Ind. Eng. Chem. Res. 48(12), 5742–5766 (2009)

    Article  Google Scholar 

  • Greenberg, H.J.: Analyzing the pooling problem. ORSA J. Comput. 7(2), 205–217 (1995)

    Article  MATH  Google Scholar 

  • Haverly, C.A.: Studies of the behavior of recursion for the pooling problem. ACM SIGMAP Bull. 25, 19–28 (1978)

    Article  Google Scholar 

  • Henderson, D., Jacobson, S.H., Johnson, A.W.: The theory and practice of simulated annealing. In: Handbook of Metaheuristics, pp. 287–319. Springer (2003)

  • Hollander, M., Wolfe, D.A.: Nonparametric Statistical Methods, 2nd edn. Wiley, New York (1999)

    MATH  Google Scholar 

  • Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of 1995 IEEE International Conference on Neural Networks, pp.1942–1948 (1995)

  • Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  • Lasdon, L., Waren, A., Sarkar, S., Palacios, F.: Solving the pooling problem using generalized reduced gradient and successive linear programming algorithms. ACM Sigmap Bulletin 27, 9–15 (1979)

    Article  Google Scholar 

  • Liberti, L., Pantelides, C.C.: An exact reformulation algorithm for large nonconvex nlps involving bilinear terms. J. Glob. Optim. 36(2), 161–189 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24(11), 1097–1100 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Misener, R., Floudas, C.A.: Advances for the pooling problem: modeling, global optimization, and computational studies. Appl. Comput. Math. 8(1), 3–22 (2009)

    MathSciNet  MATH  Google Scholar 

  • Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intell. 1(1), 33–57 (2007)

    Article  Google Scholar 

  • Reeves, C.: Modern Heuristic Techniques for Combinatorial Problems. Advanced Topics in Computer Science Series. Halsted Press, Ultimo (1993)

    MATH  Google Scholar 

  • Romeijn, H.E., Smith, R.L.: Simulated annealing for constrained global optimization. J. Glob. Optim. 5(2), 101–126 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Schutte, J.F., Groenwold, A.A.: A study of global optimization using particle swarms. J. Glob. Optim. 31(1), 93–108 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Sherali, H.D., Alameddine, A.: A new reformulation-linearization technique for bilinear programming problems. J. Glob. Optim. 2(4), 379–410 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Shi, Y., Eberhart, R.C.: A modified particle swarm optimizer. In: The 1998 IEEE International Conference on Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence, pp. 69–73. IEEE (1998)

  • Su, Y., Geunes, J.: Multi-period price promotions in a single-supplier, multi-retailer supply chain under asymmetric demand information. Ann. Oper. Res. 211(1), 447–472 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications, vol. 65. Springer (2002)

  • Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103(2), 225–249 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Visweswaran, V., Floudast, C.: A global optimization algorithm (gop) for certain classes of nonconvex nlps - ii. application of theory and test problems. Comput. Chem. Eng. 14(12), 1419–1434 (1990)

    Article  Google Scholar 

  • Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Wicaksono, D.S., Karimi, I.: Piecewise milp under and overestimators for global optimization of bilinear programs. AIChE J. 54(4), 991–1008 (2008)

    Article  Google Scholar 

  • Zomaya, A.Y., Kazman, R.: Simulated annealing techniques. In: Algorithms and Theory of Computation Handbook, pp. 33–33. Chapman & Hall/CRC, Boca Raton (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ümit Bilge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erbeyoğlu, G., Bilge, Ü. PSO-based and SA-based metaheuristics for bilinear programming problems: an application to the pooling problem. J Heuristics 22, 147–179 (2016). https://doi.org/10.1007/s10732-015-9304-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10732-015-9304-3

Keywords

Navigation