Skip to main content
Log in

Hybrid multi-objective Bayesian estimation of distribution algorithm: a comparative analysis for the multi-objective knapsack problem

  • Published:
Journal of Heuristics Aims and scope Submit manuscript

Abstract

Nowadays, a number of metaheuristics have been developed for efficiently solving multi-objective optimization problems. Estimation of distribution algorithms are a special class of metaheuristic that intensively apply probabilistic modeling and, as well as local search methods, are widely used to make the search more efficient. In this paper, we apply a Hybrid Multi-objective Bayesian Estimation of Distribution Algorithm (HMOBEDA) in multi and many objective scenarios by modeling the joint probability of decision variables, objectives, and the configuration parameters of an embedded local search (LS). We analyze the benefits of the online configuration of LS parameters by comparing the proposed approach with LS off-line versions using instances of the multi-objective knapsack problem with two to five and eight objectives. HMOBEDA is also compared with five advanced evolutionary methods using the same instances. Results show that HMOBEDA outperforms the other approaches including those with off-line configuration. HMOBEDA not only provides the best value for hypervolume indicator and IGD metric in most of the cases, but it also computes a very diverse solutions set close to the estimated Pareto front.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The discretization process converts each objective value into \(sd_r\) discrete states considering the maximum possible value for each objective (\(Max_r\)). For each objective r, its discrete value is calculated as \( zd_r = \left\lceil z_r sd_r / Max_r \right\rceil \).

  2. This approach is used in an usual application for MOKP (Zhang and Li 2007), which can be downloaded from http://http://dces.essex.ac.uk/staff/zhang/webofmoead.htm and is also suggested in Ishibuchi et al. (2015).

  3. This implementation is used in Bader and Zitzler (2011) for more than three objectives and can be downloaded from http://www.tik.ee.ethz.ch/sop/download/supplementary/hype/.

References

  • Aliferis, C.F., Statnikov, A., Tsamardinos, I., Mani, S., Koutsoukos, X.D.: Local causal and markov blanket induction for causal discovery and feature selection for classification part i: algorithms and empirical evaluation. J. Mach. Learn. Res. 11, 171–234 (2010)

    MathSciNet  MATH  Google Scholar 

  • Bader, J., Zitzler, E.: Hype: an algorithm for fast hypervolume-based many-objective optimization. IEEE Trans. Evolut. Comput. 19(1), 45–76 (2011)

    Article  Google Scholar 

  • Bader, J.M.: Hypervolume-based search for multiobjective optimization: theory and methods. Ph.D. thesis, ETH Zurich, Zurich (2009)

  • Bengoetxea, E.: Inexact graph matching using estimation of distribution algorithms. Ph.D. thesis, University of the Basque Country, Basque Country (2002)

  • Bengoetxea, E., Larrañaga, P., Bielza, C., Del Pozo, J.F.: Optimal row and column ordering to improve table interpretation using estimation of distribution algorithms. J. Heuristics 17(5), 567–588 (2011)

    Article  Google Scholar 

  • Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-Race and Iterated F-Race: An Overview, pp. 311–336. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

    MATH  Google Scholar 

  • Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA—a platform and programming language independent interface for search algorithms. In: Evolutionary Multi-criterion Optimization (EMO 2003). Lecture Notes in Computer Science, pp. 494–508. Berlin (2003)

  • Casella, G., Berger, R.L.: Statistical Inference, 2nd edn. Duxbury, Pacific Grove, CA (2001)

  • Coello, C.A.C.: An updated survey of evolutionary multiobjective optimization techniques: state of the art and future trends. In: IEEE Congress on Evolutionary Computation, pp. 3–13 (1999)

  • Conover, W.: Practical Nonparametric Statistics, third edn. Wiley, Hoboken (1999)

    Google Scholar 

  • Cooper, G., Herskovits, E.: A bayesian method for the induction of probabilistic networks from data. Mach. Learn. 9(4), 309–347 (1992)

    MATH  Google Scholar 

  • Corriveau, G., Guilbault, R., Tahan, A., Sabourin, R.: Bayesian network as an adaptive parameter setting approach for genetic algorithms. Complex Intell. Syst. 2(1), 1–22 (2016)

    Article  Google Scholar 

  • Crocomo, M.K., Delbem, A.C.B.: Otimização por Decomposição. Tech. report São Carlos (2011)

  • Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. John Wiley and Sons, New York (2001)

    MATH  Google Scholar 

  • Deb, K., Jain, H.: An Evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints. IEEE Trans. Evolut. Comput. 18(4), 577–601 (2014)

    Article  Google Scholar 

  • Deb, K., Agrawal, S., Pratab, A., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evolut. Comput. 6, 182–197 (2002)

    Article  Google Scholar 

  • DeGroot, M.H.: Optimal Statistical Decisions, vol. 82. John Wiley & Sons, Complex (2005)

    MATH  Google Scholar 

  • Etxeberria, R., Larrañaga, P.: Global optimization using Bayesian networks. In: Proceedings of the Second Symposium on Artificial Intelligence (CIMAF-99), pp. 332–339 (1999)

  • Freitas, ARRd, Guimarães, F.G., Silva, R.C.P., Souza, M.J.F.: Memetic self-adaptive evolution strategies applied to the maximum diversity problem. Optim. Lett. 8(2), 705–714 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Harik, G.: Linkage learning via probabilistic modeling in the eCGA. Urbana 51(61), 801 (1999)

    Google Scholar 

  • Hauschild, M., Pelikan, M.: An introduction and survey of estimation of distribution algorithms. Swarm Evolut. Comput. 1(3), 111–128 (2011)

  • Heckerman, D., Geiger, D., Chickering, D.: Learning bayesian networks: the combination of knowledge and statistical data. Mach. Learn. 20(3), 197–243 (1995)

    MATH  Google Scholar 

  • Ishibuchi, H., Akedo, N., Nojima, Y.: Behavior of multiobjective evolutionary algorithms on many-objective knapsack problems. IEEE Trans. Evolut. Comput. 19(2), 264–283 (2015)

    Article  Google Scholar 

  • Ishibuchi, H., Hitotsuyanagi, Y., Nojima, Y.: Scalability of multiobjective genetic local search to many-objective problems: knapsack problem case studies. In: Evolutionary Computation, 2008. CEC 2008. (IEEE World Congress on Computational Intelligence), pp. 3586–3593 (2008)

  • Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective optimization: a short review. In: 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), pp. 2419–2426 (2008)

  • Jiang, S., Ong, Y.S., Zhang, J., Feng, L.: Consistencies and contradictions of performance metrics in multiobjective optimization. IEEE Trans. Cybern. 44(12), 2391–2404 (2014)

    Article  Google Scholar 

  • Karshenas, H., Santana, R., Bielza, C., Larrañaga, P.: Multiobjective estimation of distribution algorithm based on joint modeling of objectives and variables. IEEE Trans. Evolut. Comput. 18, 519–542 (2014)

    Article  Google Scholar 

  • Ke, L., Zhang, Q., Battiti, R.: A simple yet efficient multiobjective combinatorial optimization method using decomposition and Pareto local search. IEEE Trans. Cybern. 44, 1808–1820 (2014)

    Article  Google Scholar 

  • Kollat, J.B., Reed, P., Kasprzyk, J.: A new epsilon-dominance hierarchical Bayesian optimization algorithm for large multiobjective monitoring network design problems. Adv. Water Resour. 31(5), 828–845 (2008)

    Article  Google Scholar 

  • Korb, K.B., Nicholson, A.E.: Bayesian Artificial Intelligence, second edn. CRC Press, Boca Raton (2010)

    MATH  Google Scholar 

  • Lara, A., Sanchez, G., Coello, C.A.C., Schutze, O.: HCS: a new local search strategy for memetic multiobjective evolutionary algorithms. IEEE Trans. Evolut. Comput. 14(1), 112–132 (2010)

    Article  Google Scholar 

  • Larrañaga, P., Karshenas, H., Bielza, C., Santana, R.: A review on probabilistic graphical models in evolutionary computation. J. Heuristics 18, 795–819 (2012)

    Article  MATH  Google Scholar 

  • Larrañaga, P., Karshenas, H., Bielza, C., Santana, R.: A review on evolutionary algorithms in Bayesian network learning and inference tasks. Inf. Sci. 233, 109–125 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Larrañaga, P., Lozano, J.A.: Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation, vol. 2. Springer, Netherlands (2002)

    MATH  Google Scholar 

  • Laumanns, M., Ocenasek, J.: Bayesian optimization algorithms for multi-objective optimization. In: Parallel Problem Solving from Nature-PPSN VII. Lecture Notes in Computer Science 2439, 298–307 (2002)

  • Li, H., Zhang, Q., Tsang, E., Ford, J.A.: Hybrid Estimation of distribution algorithm for multiobjective knapsack problem. Evolut. Comput. Combin. Optim. 3004, 145–154 (2004)

    MATH  Google Scholar 

  • López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace package: iterated racing for automatic algorithm configuration. IRIDIA Technical Report Series 2011-004, Universit? Libre de Bruxelles, Bruxelles,Belgium (2011). http://iridia.ulb.ac.be/IridiaTrSeries/IridiaTr2011-004.pdf

  • López-Ibáñez, M., Stützle, T.: The automatic design of multiobjective ant colony optimization algorithms. IEEE Trans. Evolut. Comput. 16(6), 861–875 (2012). doi:10.1109/TEVC.2011.2182651

    Article  Google Scholar 

  • Luna, J.E.O.: Algoritmos EM para Aprendizagem de Redes Bayesianas a partir de Dados Imcompletos. Master thesis, Universidade Federal do Mato Grosso do Sul, Campo Grande (2004)

  • Luque, M.: Modified interactive chebyshev algorithm (MICA) for non-convex multiobjective programming. Optim. Lett. 9(1), 173–187 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Martins, M.S., Delgado, M.R., Santana, R., Lüders, R., Gonçalves, R.A., Almeida, C.P.d.: HMOBEDA: Hybrid Multi-objective Bayesian estimation of distribution algorithm. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference, GECCO ’16, pp. 357–364. ACM, New York, NY, USA (2016)

  • Mühlenbein, H., Mahnig, T.: Convergence theory and applications of the factorized distribution algorithm. J. Comput. Inf. Theory 7(1), 19–32 (1999)

    Google Scholar 

  • Mühlenbein, H., Paab, G.: From recombination of genes to the estimation of distributions I. Binary parameters. In: Parallel Problem Solving from Nature-PPSN IV. Lecture Notes in Computer Science 1411, pp. 178–187 (1996)

  • Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Mateo CA (1988)

    MATH  Google Scholar 

  • Pelikan, M.: A simple implementation of the Bayesian optimization algorithm (BOA) in c++(version 1.0). Illigal Report 99011 (1999)

  • Pelikan, M., Goldberg, D.E., Cantú-Paz, E.: BOA: The Bayesian optimization algorithm. In: Proceedings of the Genetic and Evolutionary Computation Conference GECCO-1999, vol. I, pp. 525–532. Orlando, FL (1999)

  • Pelikan, M., Goldberg, D.E., Tsutsui, S.: Hierarchical Bayesian optimization algorithm: toward a new generation of evolutionary algorithms. In: SICE 2003 Annual Conference, vol. 3, pp. 2738–2743. IEEE (2003)

  • Pelikan, M., Muehlenbein, H.: The Bivariate Marginal Distribution Algorithm, pp. 521–535. Springer London, London (1999)

    Google Scholar 

  • Pham, N.: Investigations of constructive approaches for examination timetabling and 3d-strip packing. Ph.D. thesis, School of Computer Science and Information Technology, University of Nottingham (2011). http://www.cs.nott.ac.uk/~pszrq/files/Thesis-Nam.pdf

  • Russel, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice Hall, Upper Saddle River, New Jersey (2003)

    Google Scholar 

  • Santana, R., Larrañaga, P., Lozano, J.A.: Learning factorizations in estimation of distribution algorithms using affinity propagation. IEEE Trans. Evolut. Comput. 18(4), 515–546 (2010)

    Article  Google Scholar 

  • Santana, R., Larrañaga, P., Lozano, J.A.: Combining variable neighborhood search and estimation of distribution algorithms in the protein side chain placement problem. J. Heuristics 14, 519–547 (2008)

    Article  MATH  Google Scholar 

  • Schwarz, J., Ocenasek, J.: Multiobjective Bayesian optimization algorithm for combinatorial problems: theory and practice. Neural Netw. World 11(5), 423–441 (2001)

    Google Scholar 

  • Shah, R., Reed, P.: Comparative analysis of multiobjective evolutionary algorithms for random and correlated instances of multiobjective d-dimensional knapsack problems. Eur. J. Oper. Res. 211(3), 466–479 (2011)

    Article  MathSciNet  Google Scholar 

  • Shakya, S., Santana, R.: An EDA based on local markov property and gibbs sampling. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, GECCO ’08, pp. 475–476. ACM, New York, NY, USA (2008). doi:10.1145/1389095.1389185

  • Shim, V.A., Tan, K.C., Chia, J.Y., Al Mamun, A.: Multi-objective optimization with estimation of distribution algorithm in a noisy environment. Evolut. Comput. 21(1), 149–177 (2013)

    Article  Google Scholar 

  • Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in genetic algorithms. Evolut. Comput. 2, 221–248 (1994)

    Article  Google Scholar 

  • Tan, Y.Y., Jiao, Y.C.: MOEA/D with Uniform design for solving multiobjective knapsack problems. J. Comput. 8, 302–307 (2013)

    Google Scholar 

  • Tanigaki, Y., Narukawa, K., Nojima, Y., Ishibuchi, H.: Preference-based NSGA-II for many-objective knapsack problems. In: 7th International Conference on Soft Computing and Intelligent Systems (SCIS) and Advanced Intelligent Systems (ISIS), pp. 637–642 (2014)

  • Tsamardinos, I., Aliferis, C.F., Statnikov, A.R., Statnikov, E.: Algorithms for large scale markov blanket discovery. In: FLAIRS conference 2, 376–380 (2003)

  • Tsamardinos, I., Brown, L.E., Aliferis, C.F.: The max-min hill-climbing bayesian network structure learning algorithm. Mach. learn. 65(1), 31–78 (2006)

    Article  Google Scholar 

  • van Veldhuizen, D.A., Lamont, G.B.: Multiobjective evolutionary algorithm test suites. In: Proceedings of the 1999 ACM Symposium on Applied Computing, SAC ’99, pp. 351–357. ACM, New York, NY, USA (1999)

  • Vianna, D.S., de Fátima Dianin Vianna, M.: Local search-based heuristics for the multiobjective multidimensional knapsack problem. Produção 23, 478–487 (2013)

    Google Scholar 

  • Wang, L., Wang, S., Xu, Y.: An effective hybrid EDA-based algorithm for solving multidimensional knapsack problem. Expert Syst. Appl. 39, 5593–5599 (2012)

    Article  Google Scholar 

  • Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evolut. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  • Zhou, A., Qu, B.Y., Li, H., Zhao, S.Z., Suganthanb, P.N., Zhang, Q.: Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evolut. Comput. 1, 32–49 (2011)

    Article  Google Scholar 

  • Zhou, A., Sun, J., Zhang, Q.: An estimation of distribution algorithm with cheap and expensive local search methods. IEEE Trans. Evolut. Comput. 19(6), 807–822 (2015)

    Article  Google Scholar 

  • Zitzler, E., Thiele, L.: Multiple objective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evolut. Comput. 3, 257–271 (1999)

    Article  Google Scholar 

  • Zitzler, E., Thiele, L., Deb, K.: Comparison of Multiobjective evolutionary algorithms: empirical results. IEEE Tran. Evolut. Comput. 8(2), 173–195 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

M. Delgado acknowledges CNPq Grant 309197/2014-7. M. Martins acknowledges CAPES/Brazil. R. Santana acknowledges support by: IT-609-13 Program (Basque Government), TIN2013-41272P (Spanish Ministry of Science and Innovation) and CNPq Program Science Without Borders No. 400125/2014-5 (Brazil Government).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcella S. R. Martins.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, M.S.R., Delgado, M.R.B.S., Lüders, R. et al. Hybrid multi-objective Bayesian estimation of distribution algorithm: a comparative analysis for the multi-objective knapsack problem. J Heuristics 24, 25–47 (2018). https://doi.org/10.1007/s10732-017-9356-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10732-017-9356-7

Keywords

Navigation