Skip to main content
Log in

Optimal Feature Selection for the Classification of Hyperspectral Imagery Using Adaptive Spectral–Spatial Clustering

  • Published:
International Journal of Parallel Programming Aims and scope Submit manuscript

Abstract

Hyperspectral images captured through the hyperspectral sensors play an imperative part in remote sensing applications in the present context. Unlike traditional images sensed with few bands in the visible spectrum, the hyperspectral (HS) images are obtained with hundreds of spectral band ranges from infrared to ultraviolet regions. Because of its vast spatial and spectral data, it requires an extensive computational system for processing and its hidden features are needed to be unveiled in an effective manner specifically for the classification of HS imagery. This approach exploits the high spectral band correlation and rich spatial information of the HS images for the generation of feature vectors. To attain optimal feature space for the best probable classification, an adaptive approach is incorporated to adaptively choose spectral–spatial features for feature selection to classify the pixels effectively. Furthermore, the HS image encompasses several bands including noisy bands. To categorize the images with great accuracy, it is suggested to eradicate the noisy bands whilst retaining the informative bands. In this research, an adaptive spectral–spatial feature selection scheme is proposed for HS images where the extremely correlated representative bands are considered for analysis with uncorrelated and noisy spectral bands are judiciously discarded during its classification process. This hybrid approach not merely diminishes the computational time and also improves the general classification accuracy significantly. The empirical result displays that the proposed work surpasses the conventional approach of HS image classification systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Richards, J.A., Jia, X.: Remote Sensing Digital Image Analysis: An Introduction, 4th edn. Springer, Berlin (2006)

    Google Scholar 

  2. Ji, R., Gao, Y., Hong, R., Liu, Q., Tao, D., Li, X.: Spectral–spatial constraint hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 52(3), 1811–1824 (2014)

    Article  Google Scholar 

  3. Pu, H., Chen, Z., Wang, B., Jiang, G.-M.: A novel spatial–spectral similarity measure for dimensionality reduction and classification of hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 52(11), 7008–7022 (2014)

    Article  Google Scholar 

  4. Wang, K., Yong, B., Gu, X., Xiao, P., Zhang, X.: Spectral similarity measure using frequency spectrum for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 12(1), 130–134 (2015)

    Article  Google Scholar 

  5. Zhang, E., Zhang, X., Wang, S.: Improving hyperspectral image classification using spectral information divergence. IEEE Geosci. Remote Sens. Lett. 11(1), 249–253 (2014)

    Article  Google Scholar 

  6. Jiao, H., Zhong, Y., Zhang, L.: An unsupervised spectral matching classifier based on artificial DNA computing for hyperspectral remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 52(8), 4524–4538 (2014)

    Article  Google Scholar 

  7. Chen, Y., Nasrabadi, N.M., Tran, T.D.: Hyperspectral image classification using dictionary-based sparse representation. IEEE Trans. Geosci. Remote Sens. 49(10), 3973–3985 (2011)

    Article  Google Scholar 

  8. Khodadadzadeh, M., Li, J., Plaza, A., Ghassemian, H., Bioucas-Dias, J.M., Li, X.: Spectral–spatial classification of hyperspectral data using local and global probabilities for mixed pixel characterization. IEEE Trans. Geosci. Remote Sens. 52(10), 6298–6314 (2014)

    Article  Google Scholar 

  9. Kang, X., Li, S., Benediktsson, J.A.: Spectral–spatial hyperspectral image classification with edge-preserving filtering. IEEE Trans. Geosci. Remote Sens. 52(5), 2666–2677 (2014)

    Article  Google Scholar 

  10. Li, J., Huang, X., Gamba, P., Bioucas-Dias, J.M., Zhang, L., Benediktsson, J.A., Plaza, A.: Multiple feature learning for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 53(3), 1592–1606 (2015)

    Article  Google Scholar 

  11. Chidambaram, S., Sumathi, A.: A novel spectral signature based classification approach for airborne and spaceborne hyperspectral imagery. Asian J. Inf. Technol. 15(23), 4926–4933 (2016)

    Google Scholar 

  12. Landgrebe, D.: Hyperspectral image data analysis. IEEE Signal Process. Mag. 19(1), 17–28 (2002)

    Article  Google Scholar 

  13. Plaza, A., Benediktsson, J.A., Boardman, J., Brazile, J., Bruzzone, L., Camps-Valls, G., Chanussot, J., Fauvel, M., Gamba, P., Gualtieri, J.A., Marconcini, M., Tilton, J.C., Trianni, G.: Recent advances in techniques for hyperspectral image processing. Remote Sens. Environ. 113(Supplement 1), S110–S122 (2009)

    Article  Google Scholar 

  14. Maggiori, E., Tarabalka, Y., Charpiat, G.: Improved partition trees for multi-class segmentation of remote sensing images. In: IEEE IGARSS, pp. 1016–1019 (2015)

  15. Li, Y., Zhang, H., Shen, Q.: Spectral–spatial classification of hyperspectral imagery with 3D convolutional neural network. Remote Sens. 9, 67 (2017). https://doi.org/10.3390/rs9010067

    Article  Google Scholar 

  16. Camps-Valls, G., Bruzzone, L.: Kernel-based methods for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 43(6), 1351–1362 (2005)

    Article  Google Scholar 

  17. Gualtieri, J.A., Cromp, R.F.: Support vector machines for hyperspectral remote sensing classification. Proc. SPIE 3584, 221–232 (1998)

    Article  Google Scholar 

  18. Fauvel, M., Chanussot, J., Benediktsson, J.A.: Evaluation of kernelsfor multiclass classification of hyperspectral remote sensing data. In: Proceedings of ICASSP, May 2006, pp. II-813–II-816 (2006)

  19. BalaAnand, M., Karthikeyan, N., Karthik, S.: Designing a framework for communal software: based on the assessment using relation modelling. Int. J. Parallel Program. (2018). https://doi.org/10.1007/s10766-018-0598-2

    Article  Google Scholar 

  20. Vapnik, V.N.: Statistical Learning Theory, vol. 2. Wiley, New-York (1998)

    MATH  Google Scholar 

  21. Lin, Y.: Support vector machines and the Bayes rule in classification. Data Min. Knowl. Discov. 6, 259 (2002). https://doi.org/10.1023/A:1015469627679

    Article  MathSciNet  Google Scholar 

  22. Marconcini, M., Camps-Valls, G., Bruzzone, L.: A composite semisupervised SVM for classification of hyperspectral images. IEEE Geosci. Remote Sens. Lett. 6(2), 234–238 (2009)

    Article  Google Scholar 

  23. Tarabalka, Y., Benediktsson, J.A., Chanussot, J.: Spectral–spatial classification of hyperspectral imagery based on partitional clustering techniques. IEEE Trans. Geosci. Remote Sens. 47(8), 2973–2987 (2009)

    Article  Google Scholar 

  24. Archibald, R., Fann, G.: Feature selection and classification of hyperspectral images with support vector machines. IEEE Geosci. Remote Sens. Lett. 4(4), 674–677 (2007)

    Article  Google Scholar 

  25. Cortes, C., Vapnik, V.: Support-vector network. Mach. Learn. 20, 1–25 (1995)

    MATH  Google Scholar 

  26. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, Berlin (1998)

    MATH  Google Scholar 

  27. Fang, L., Li, S., Duan, W., Ren, J., Benediktsson, J.A.: Classification of hyperspectral images by exploiting spectral–spatial information of superpixel via multiple kernels. IEEE Trans. Geosci. Remote Sens. 53(12), 6663–6674 (2015)

    Article  Google Scholar 

  28. Mucherino, A., Papajorgji, P.J., Pardalos, P.M.: k-nearest neighbor classification. In: Pardalos, P.M. (ed.) Data Mining in Agriculture. Springer Optimization and Its Applications, vol. 34. Springer, New York (2009). https://doi.org/10.1007/978-0-387-88615-2_4

    Chapter  MATH  Google Scholar 

  29. Kim, J., Kim, B.-S., Savarese, S.: 6th WSEAS International Conference on Computer Engineering and Applications, and Proceedings of the 2012 American conference on Applied Mathematics, pp. 133–138. Cambridge, Harvard, 25–27 January 2012. ISBN: 978-1-61804-064-0

  30. AVIRIS Salinas Valley Hyperspectral Datasets. http://www.ehu.es/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes. Accessed 19 Jan 2018

  31. Inselberg, A.: The plane with parallel coordinates. Vis. Comput. 1(2), 69–91 (1985)

    Article  MathSciNet  Google Scholar 

  32. Devi, G., Chauhan, C., Chakraborti, S.: Proceedings of the Sixth Symposium on Educational Advances in Artificial Intelligence (EAAI-16), pp. 4075–4080

  33. Zebin, W., Wang, Q., Plaza, A., Li, J., Sun, L., Wei, Z.: Parallel spatial–spectral hyperspectral image classification with sparse representation and markov random fields on GPUs. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8(6), 2926–2938 (2015)

    Article  Google Scholar 

  34. López-Fandiño, J., Heras, D.B., Argüello, F., et al.: GPU framework for change detection in multitemporal hyperspectral images. Int. J. Parallel Program. (2017). https://doi.org/10.1007/s10766-017-0547-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Chidambaram.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chidambaram, S., Sumathi, A. Optimal Feature Selection for the Classification of Hyperspectral Imagery Using Adaptive Spectral–Spatial Clustering. Int J Parallel Prog 48, 813–832 (2020). https://doi.org/10.1007/s10766-018-0607-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10766-018-0607-5

Keywords

Navigation