Skip to main content
Log in

Channel and Data Estimation for Ad Hoc Networks and Cognitive Radio

  • Published:
International Journal of Wireless Information Networks Aims and scope Submit manuscript

Estimation of channel and data characteristics by the receiver is important in adaptive wireless transmission protocols and in cognitive radio. This paper formulates the estimation problem with the help of an illustrative example from the IEEE 802.11a OFDM standard. The problem reduces to the estimation of the common component variance and mixing probabilities in a finite Gaussian mixture, with known values for component means. Using the known component means, μ1, ... , μ M , a set of non-linear transformations, \({\sinh \mu_i x}\) and \({\cosh \mu_i x}\) of the data (mixture random variable X) are used to develop convergent and computationally efficient estimators for both the noise variance and the vector of symbol probabilities. The estimation equations can be implemented recursively or with a batch processing algorithm. Asymptotic variances of the estimates and the Cramer–Rao minimum variance bounds are derived. The estimates converge to true unknowns even when the sequences of noise and data symbols are dependent sequences. The OFDM example is simulated with parameters corresponding to the highest acceptable error rate. For a time-varying channel model chosen from the literature, it is shown that our estimator receives considerably more than adequate amount of data during an average time interval of unchanging channel characteristics. Analytical results, numerical results and related issues are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. R. W. Brodersen, A. Wolisz, D. Cabric, S. M. Mishra, and D. Willkomm, Corvus: A cognitive radio approach for usage of virtual unlicensed spectrum. http://www.bwrc.eecs.berkeley.edu/Research/MCMA/CR_White_paper_final1.pdf, White Paper, July 2004

  2. J. Mitola III, Software Radio – Cognitive Radio. http://www.ourworld.compuserve.com/homepages/jmitola

  3. Pursley M. B., Wilkins C. S. (2000) Adaptive transmission for direct-sequence spread-spectrum communications over multipath channels. International Journal of Wireless Information Networks 7(2):69–77

    Article  Google Scholar 

  4. Gass Jr. J. H., Pursley M. B., Russell H. B., Wysocarski J. S. (2001) An adaptive-transmission protocol for frequency-hop wireless communication Networks. Wireless Networks 7:487–495

    Article  MATH  Google Scholar 

  5. McLachlan G., Krishnan T. (1997) The EM Algorithm and Extensions. Wiley Interscience, NY, USA

    MATH  Google Scholar 

  6. Silverman B. W. (1986) Density Estimation for Statistics and Data Analysis. Chapman & Hall, FL, USA

    MATH  Google Scholar 

  7. Everitt B. S., Hand D. J. (1981) Finite Mixture Distributions. Chapman & Hall, FL, USA

    MATH  Google Scholar 

  8. Dattatreya G. R., Fang X. (2003) Parameter estimation: known vector signals in unknown Gaussian noise. Pattern Recognition 36:2317–2332

    Article  MATH  Google Scholar 

  9. Krishnamurthy V., Moore B. (1993) On-line estimation of hidden Markov model parameters based on Kullback–Leibler information measure. IEEE Transactions on Signal Processing 41:557–573

    Article  Google Scholar 

  10. Tugnait J. K., Tong L., Ding Z. (2000) Single-user channel estimation and equalization. IEEE Signal Processing Magazine 17:17–28

    Article  Google Scholar 

  11. Wang X., Chen R. (2001) Blind turbo equalization in Gaussian and impulsive noise. IEEE Transactions on Vehicular Technology 50:1092–1105

    Article  Google Scholar 

  12. Monin A., Salut G. (2001) Minimum variance estimation of parameters constrained by bounds. IEEE Transactions on Signal Processing 49:246–248

    Article  Google Scholar 

  13. Pham D. S., Zoubir A. M. (2005) A sequential algorithm for robust parameter estimation. IEEE Signal Processing Letters 12:21–24

    Article  Google Scholar 

  14. Farquharson M., O’Shea P., Ledwich G. (2005) A computationally efficient technique for estimating the parameters of polynomial-phase signals from noisy observation. IEEE Transactions on Signal Processing 53:3337–3342

    Article  MathSciNet  Google Scholar 

  15. X. Deng, A. M. Haimovich, and J. Garcia-Frias, Decision Directed iterative channel estimation for MIMO systems. IEEE International Conference on Communications (ICC ’03), pp. 2326–2329, 2003

  16. S. Jeong and R. M. Gray. A comparison of EM and GMVQ in estimating Gauss mixtures: application to probabilistic image retrieval. Proceedings of ICASSP 2005, Vol. 5, v/361–v/364, 2005

  17. S. A. Vorobyov, Y. C. Eldar, A. Nemirovski, and A. B. Gershman, Probability-constrained approach to estimation of random Gaussian parameters. 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, pp. 101–104, 2005

  18. Proakis J. G. (1995) Digital Communications. McGraw Hill, NY, USA

    Google Scholar 

  19. Tanenbaum A. S. (2003) Computer Networks. Prentice-Hall, NJ, USA

    Google Scholar 

  20. Papoulis A. (1984) Probability, Random Variables and Stochastic Processes. McGraw Hill, NY, USA

    MATH  Google Scholar 

  21. Lancaster P., Tismenetsky M. (1985) The Theory of Matrices: 2nd edition. Academic Press Inc., CA, USA

    MATH  Google Scholar 

  22. Serfling R. J. (1980) Approximation Theorems of Mathematical Statistics. John Wiley & Sons, NY, USA

    MATH  Google Scholar 

  23. Folland G. B. (1999) Real Analysis: Modern Techniques and Their Applications: 2nd Edition. John Wiley & Sons, NY, USA

    MATH  Google Scholar 

  24. Judge G. G., Hill R. C., Griffiths W. E., Lütkepohl H., Lee T. (1982) Introduction to the Theory and Practice of Econometrics. John Wiley & Sons, NY, USA

    Google Scholar 

  25. van Trees H. L. (1968) Detection, Estimation and Modulation Theory, Part 1. John Wiley & Sons, NY, USA

    Google Scholar 

  26. Dattatreya G. R., Kanal L. N. (1990) Asymptotically efficient estimation of prior probabilities in multiclass finite mixtures. IEEE Transactions on Information Theory 37(3):482–489

    Article  Google Scholar 

  27. Davisson L. D., Schwartz S. C. (1970) Analysis of a decision-directed receiver with unknown priors. IEEE Transactions on Information Theory 16:270–276

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galigekere R. Dattatreya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, L.N., Dattatreya, G.R. Channel and Data Estimation for Ad Hoc Networks and Cognitive Radio. Int J Wireless Inf Networks 14, 17–31 (2007). https://doi.org/10.1007/s10776-006-0052-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10776-006-0052-z

Keywords

Navigation