Skip to main content
Log in

Co-Channel Interference in Body Area Networks with Indoor Measurements at 2.4 GHz: Distance-to-Interferer is a Poor Estimate of Received Interference Power

  • Published:
International Journal of Wireless Information Networks Aims and scope Submit manuscript

Abstract

Inter-network interference is likely to be a significant source of difficulty for wireless body area networks. Movement, proximity of networks, the large number of nodes per network and the lack of central coordination make cellular approaches to interference modeling ineffective. We examine the interference power of multiple Body Area Networks (BANs) when people move randomly within an indoor office environment. The power-loss trend over 3 m is overwhelmed by random variations in the signal power. Distance-to-interferer is a poor estimate of instantaneous received interference power, and an even less reliable estimate of instantaneous signal-to-interference ratio (SIR). We develop a lognormal statistical model for the signal-to-interference which incorporates the distance effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. A. Astrin, The promise of body area networks IEEE 802.15.6. Presented, ISMICT 2007, Dec. 2007.

  2. S. M. Ryu, D. Y. Kim, C. S. Eun, and H. S. Lee, WBAN = mobile femto cell. IEEE submission, Doc.ID IEEE 802.15-09-0003-01-0006, Jan. 2009.

  3. B. Zhen, M. Patel, S. Lee, E. Won, and A. Astrin, TG6 technical requirements document (TRD) IEEE P802.15-08-0644-09-0006. http://mentor.ieee.org/802.15, Sep. 2008.

  4. E. Stuart, M. Moh, and T.-S. Moh, Privacy and security in biomedical applications of wireless sensor networks. in Intl. Symp. App. Sci. Bio-Med. Comm. Tech., Aalborg, Denmark, Oct. 25 2008.

  5. S. Baatz, M. Frank, P. Martini, and C. Scholz, A worst-case model for co-channel interference in the Bluetooth wireless system. in Local Computer Networks, Oct. 2003, pp. 346–355.

  6. E. Géron and A. Villian, A new insight into Bluetooth piconets coexistence. Wireless Communications and Mobile Computing, Vol. 9, pp. 673–683, 2009.

    Article  Google Scholar 

  7. B. Chang, J. Hou, D.-K. Cho, and M. Gerla, Minimizing 802.11 interference on Zigbee medical sensors. in Bodynets, Los Angeles, CA, Apr. 2009.

  8. D. Domenicali and M.-G. D. Benedetto, Performance analysis for a body area network composed of IEEE 802.15.4a devices. in Workshop on Positioning Navigation and Communication, Hannover, Germany, 2007, pp. 273–276.

  9. D. Miniutti, L. W. Hanlen, D. B. Smith, J. A. Zhang, D. Rodda, B. Gilbert, and G. Fang, NICTA proposal: IEEE P802.15-09-0345-00-0006. IEEE submission, May 2009.

  10. S. Cheng and C. Huang, Network merging: Design strategies of an ultra low power and high reliability MAC. IEEE submission, Doc.ID. IEEE 802.15-09-0227-00-0006, Mar. 2009.

  11. S. A Khayam and H. Radha, Linear-complexity models for wireless mac-to-mac channels. Wireless Networks, Vol. 11, pp. 543–555, 2005.

    Article  Google Scholar 

  12. D. Davenport, N. Seidl, J. Moss, M. Patel, A. Batra, J.-M. Ho, S. Hosur, J. Roh, T. Schmidl, O. Omeni, and A. Wong, IEEE P802.15-09-0327-00-0006 MedWiN MAC and security proposal documentation. IEEE submission, May 2009.

  13. E. Carlson, M. Kubisch, and D. Hollos, A receiver based protecting protocol for wireless multi-hop networks. in PE-WASUN, Montreal, Canada, 10–13 Oct. 2005.

  14. R. B. D’Agostino and M. A. Stephens, Eds., Goodness-of-fit Techniques, ser. Statistics: Textbooks and Monographs. Marcel Dekker, Inc. New York, 1986, vol. 68.

    Google Scholar 

  15. S. L. Shrestha, A. Lee, J. Lee, and D.-W. Seo, A group of people acts like a black body in a wireless mesh network. in IEEE Globecom, Washington DC, USA, Nov. 2007, pp. 4834–4839.

  16. S. Obayashi and J. Zander, A body-shadowing model for indoor radio communication environments. IEEE Transactions on Antennas and Propagation, vol. 46, No. 6, pp. 920–927, Jun 1998.

    Article  Google Scholar 

  17. S. K. S. Gupta, S. Lalwani, Y. Prakash, E. Elsharawy, and L. Schwiebert, Towards a propagation model for wireless biomedical applications. in IEEE Globecom, 2003, pp. 1993–1997.

  18. B. Latré, G. Vermeeren, I. Moerman, L. Martens, P. Demeester, F. Louagie, and S. Donnay, Networking and propagation issues in body area networks. in 11 Symposium on Communications and Vehicular Technology in the Benelux, 2004.

  19. K. Takizawa, T. Aoyagi, H.-B. Li, J.-i. Takada, T. Kobayashi, and R. Kohno, Path loss and power delay profile channel models for wireless body area networks. in Antennas and Propagation Society International Symposium, Jun. 2009, pp. 1–4.

  20. N. Katayama, K. Takizawa, T. Aoyagi, J.-i. Takada, H.-B. Li, and R. Kohno, Channel model on various frequency bands for wearable body area network. in Intl. Symp. App. Sci. Bio-Med. Comm. Tech., Aalborg, Denmark, Oct. 2008.

  21. T. Aoyagi, J.-i. Takada, K. Takizawa, N. Katayama, T. Kobayashi, K. Y. Yazandoost, H.-B. Li, and R. Kohno, Channel model for wearable and implantable WBANs. IEEE submission, Doc.ID IEEE 802.15-08-0416-0006, Nov. 2008.

  22. K. Takizawa, K. Y. Yazdandoost, T. Aoyagi, N. Katayama, J.-i. Takada, T. Kobayashi, H.-b. Li, and R. Kohno, Preliminary channel models for wearable WBAN, IEEE 802.15-08-0155-00-0006. https://mentor.ieee.org/802.15, Mar. 2008.

  23. Y. Zhao, A. Sani, Y. Hao, S.-L. Lee, and G.-Z. Yang, A simulation environment for subject-specific radio channel modeling in wireless body sensor networks. in International Workshop on Wearable and Implantable Body Sensor Networks, Berkeley CA, USA, Jun. 2009, pp. 23–28.

  24. J. Ryckaert, P. De Doncker, R. Meys, A. de Le Hoye, and S. Donnay, Channel model for wireless communication around human body. IEE Electronics Letter, vol. 40, pp. 543–544, 2004.

    Article  Google Scholar 

  25. G. Roqueta, A. Fort, C. Craeye, and C. Oestges, Analytical propagation models for body area networks. in Antennas and Propagation for Body-Centric Wireless Communications, 2007 IET Seminar on, April 2007, pp. 90–96.

  26. E. Reusens, W. Joseph, G. Vermeeren, D. Kurup, and L. Martens, Real human body measurements, model, and simulations of a 2.45 GHz wireless body area network communication channel. in International Summer School and Symposium on Medical Devices and Biosensors, Jun. 2008, pp. 149–152.

  27. K. Y. Yazdandoost and K. Sayrafian-Pour, Channel model for body area network (BAN). IEEE submission, Doc.ID: IEEE-802.15-08-0033-00-0006, Nov. 2008.

  28. J. Karedal, A. J. Johansson, F. Tufvesson, and A. F. Molisch, A measurement-based fading model for wireless personal area networks. IEEE Transactions on Wireless Communications, vol. 7, No. 11, pp. 4575–4585, Nov. 2008.

    Article  Google Scholar 

  29. G.-Z. Yang, Ed., Body Sensor Networks. Springer, New York, 2006.

    Google Scholar 

  30. H. T. Friis, A note on a simple transmission formula. Proceedings of the IRE , vol. 34, No. 5, pp. 254–256, 1946.

    Article  Google Scholar 

  31. R. Brown, C. R. Englund, and H. T. Friis, Radio transmission measurements. Proceedings of the IRE, vol. 11, No. 2, pp. 115–152, Apr. 1923.

    Article  Google Scholar 

  32. K. I. Ziri-Castro, W. G. Scanlon, R. Feustle, and N. E. Evans, Channel modelling and propagation measurements for a bodyworn 5.2 GHz terminal moving in the indoor environment. in IEEE Int. Symp. Antennas & Propagation, 2003, pp. 67–70.

  33. W. G. Scanlon and N. E. Evans, Numerical analysis of bodyworn UHF antenna systems. IEEE Electronics and Communication Engineering, vol. 13, pp. 53–64, Apr. 2001.

    Article  Google Scholar 

  34. J. A. Zhang, L. W. Hanlen, D. Miniutti, D. Rodda, and B. Gilbert, Interference in body area networks: Are signal-links and interference-links independent?” in IEEE Intl. Symp. Personal, Indoor and Mobile Radio Commun., PIMRC, Sep. 2009.

  35. D. Smith, D. Miniutti, L. Hanlen, D. Rodda, and B. Gilbert, Dynamic narrowband body area communications: Link-margin based performance analysis and second-order temporal statistics. in IEEE Wireless Commun. Net. Conf., WCNC, 2010.

  36. D. B. Smith, L. W. Hanlen, D. Miniutti, J. A. Zhang, D. Rodda, and B. Gilbert, Statistical characterization of the dynamic narrowband body area channel. in Intl. Symp. App. Sci. Bio-Med. Comm. Tech., Aalborg, Denmark, Oct. 2008.

  37. H. Akaike, Information theory as an extension of the maximum likelihood principle. in Proc. 2nd. Int. Inf. Theory Syst., 1973, pp. 267–281.

  38. Standard deviation. From MathWorld–A Wolfram Web Resource http://mathworld.wolfram.com/StandardDeviation.html.

  39. L. W. Hanlen, D. Miniutti, D. Rodda, and B. Gilbert, Interference in body area networks: Distance does not dominate. in IEEE Intl. Symp. Personal, Indoor and Mobile Radio Commun., PIMRC, Yokohama, Japan, Sep. 2009.

Download references

Acknowledgment

The authors would like to thank the test subjects for their co-operation in producing this research. L. Hanlen, D. Miniutti, D. Smith, D. Rodda, and B. Gilbert are with NICTA. NICTA is funded by the Australian Government as represented by the Department of Broadband, Communications and the Digital Economy and the Australian Research Council through the ICT Centre of Excellence program. L. Hanlen, D. Miniutti, and D. Smith also hold research positions with the Faculty of Engineering, Australian National University. A part of this work appeared in [39]

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. W. Hanlen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanlen, L.W., Miniutti, D., Smith, D. et al. Co-Channel Interference in Body Area Networks with Indoor Measurements at 2.4 GHz: Distance-to-Interferer is a Poor Estimate of Received Interference Power. Int J Wireless Inf Networks 17, 113–125 (2010). https://doi.org/10.1007/s10776-010-0123-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10776-010-0123-z

Keywords

Navigation