Skip to main content
Log in

High Resolution Cognitive Radio-Based Concatenated Spectrum Time-of-Arrival Estimation

  • Published:
International Journal of Wireless Information Networks Aims and scope Submit manuscript

Abstract

This paper proposes high-precision, time-of-arrival (TOA) estimation by concatenating non-contiguous and non-equal white spaces in the spectrum. White spaces are identified and allocated by the capabilities of cognitive radios (CR). A simple radio system that enables sequential concatenation of non-contiguous bands is introduced. The paper aims to design signal-processing techniques for the proposed radio that maintain a TOA performance comparable to that of utilizing a bandwidth equivalent to the addition of all white spaces. This work also investigates two potential high resolutions, TOA estimation architectures that are applicable to CR-based systems. The first approach estimates TOA over each sub-band and then optimally fuses the estimated TOAs. In the second technique, channels estimated over sub-bands are concatenated and a TOA-estimation method is applied to the whole available spectrum. The Cramer–Rao bound (CRB) of the TOA estimation for both approaches is computed. Minimum mean square estimation (MMSE) algorithm is applied to evaluate the performance of the proposed system. Simulations are concluded to study the performance in terms of the variance of error. Moreover, the complexity of the proposed concatenation method is evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Mitola III and G. Q. Maguire Jr, Cognitive radio: making software radios more personal, IEEE Personal Communications Magazine, Vol. 6, No. 4, pp. 13–18, 1999.

    Article  Google Scholar 

  2. B. A. Fette, Cognitive radio technology (Communications Engineering), Newnes, 2006.

  3. S. Yarkan and H. Arslan, Exploiting location awareness towards improved wireless system design in cognitive radio, IEEE Communications Magazine, Vol. 46, No. 1, pp. 128–136, 2008.

    Article  Google Scholar 

  4. S. Haykin, Cognitive radio: brain-empowered wireless communications, IEEE Journal on Selected Areas in Communications, Vol. 23, No. 2, pp. 201–220, 2005.

    Article  Google Scholar 

  5. K. Pahlavan, X. Li and J. Makela, Indoor geolocation science and technology, IEEE Communication Society Magazine, Vol. 40, No. 2, pp. 112–118, 2002.

    Article  Google Scholar 

  6. K. Pahlavan and P. Krishnamurthy, Principles of Wireless Networks—A Unified Approach, Prentice-HallEnglewood Cliffs, 2002.

    Google Scholar 

  7. E. S. Lohan, R. Hamila, A. Lakhzouri and M. Renfors, Highly efficient techniques for mitigating the effects of multipath propagation in DS-CDMA delay estimation, IEEE Transactions on Wireless Communications, Vol. 4, No. 1, pp. 149–162, 2005.

    Article  Google Scholar 

  8. S. Gezici, H. Celebi, H. Vincent Poor and H. Arslan, Fundamental limits on time delay estimation in dispersed spectrum cognitive radio systems, IEEE Transactions on Wireless Communications, Vol. 8, No. 1, pp. 78–83, 2009.

    Article  Google Scholar 

  9. F. Kocak, H. Celebi, S. Gezici, K. A. Qaraqe, H. Arslan and H. Vincent Poor, Time delay estimation in dispersed spectrum cognitive radio systems, EURASIP Journal on Advances in Signal Processing, Vol. 2010, pp. 1–11, 2010.

    Article  Google Scholar 

  10. H. Celebi and H. Arslan, Cognitive positioning systems, IEEE Transactions on Wireless Communications, Vol. 6, No. 12, pp. 4475–4483, 2007.

    Article  Google Scholar 

  11. H. Celebi and H. Arslan, Ranging accuracy in dynamic spectrum access networks, IEEE Communications Letters, Vol. 11, No. 5, pp. 405–407, 2007.

    Article  Google Scholar 

  12. H. Celebi and H. Arslan, Adaptive positioning systems for cognitive radios, IEEE DySpan 07, pp. 78–84, 2007.

  13. M. Pourkhaatoun, and S. A. Zekavat, High precision concatenated spectrum cognitive radio-based range estimation,” Proceedings of IEEE Milcom’ 10, San Jose, pp. 311–316, 2010.

  14. A. H. Sayed, Fundamentals of Adaptive Filtering, WileyNew York, 2003.

    Google Scholar 

  15. T. G. Manickam, R. J. Vaccaro and D. W. Tufts, A least squares algorithm for multipath time-delay estimation, IEEE Transactions of Signal Processing, Vol. 42, pp. 3229–3233, 1994.

    Article  Google Scholar 

  16. A. Saleh and R. Valenzuela, A statistical model for indoor multipath propagation, IEEE Journal on Selected Areas in Communications, Vol. 5, No. 2, pp. 128–137, 1987.

    Article  Google Scholar 

  17. N. Alsindi, X. Li and K. Pahlavan, Analysis of TOA estimation using wideband measurements of indoor radio propagations, IEEE Transactions on Instrumentation and Measurements, Vol. 56, No. 5, pp. 1537–1545, 2007.

    Article  Google Scholar 

  18. L. Dai, Z. Wang, J. Wang and Z. Yang, Positioning with OFDM signals for the next-generation GNSS, IEEE Transactions on Consumer Electronics, Vol. 56, No. 2, pp. 374–379, 2010.

    Article  Google Scholar 

  19. Z. J. Wang, Z. Han and K. J. R. Liu, A MIMO-OFDM channel estimation approach using time of arrivals, IEEE Transactions on Wireless Communications, Vol. 4, No. 3, pp. 1207–1213, 2005.

    Article  Google Scholar 

  20. B. Razavi, Fundamentals of Microelectronics, WileyNJ, 2006.

    Google Scholar 

  21. A. Abidi, Direct-conversion radio transceivers for digital communications, IEEE Journal of Solid-State Circuits, Vol. 30, No. 12, pp. 1399–1410, 1995.

    Article  Google Scholar 

  22. D. Porat, Digital Processing of Random Signals: Theory and Methods, Prentice-HallEnglewood Cliffs, 1993.

    Google Scholar 

  23. P. Stoica and A. Nehorai, MUSIC, maximum likelihood and Cramer–Rao Bound, IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 37, No. 5, pp. 720–741, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  24. S. Yuan, and M. Z Win, On the accuracy of localization systems using wideband antenna arrays, IEEE Transactions on Communications, Vol. 58, No. 1, pp. 270–280, 2010.

  25. F. X. Ge, D. Shen, Y. Peng and V. O. K. Li, Super-resolution time delay estimation in multipath environments, IEEE Transactions on Circuits and Systems, Vol. 54, No. 9, pp. 1977–1986, 2007.

    Article  Google Scholar 

  26. A. Zeira and P. M. Schultheiss, Time delay estimation for closely spaced echoes, Proceedings of IEEE Transactions on Acoustics, Speech and Signal Processing, pp. 2763–2766, 1990.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Pourkhaatoun.

Appendices

Appendix A: Linear Estimation Equations

Gauss–Markov theorem [14] is used to estimate TOAs from different bands. A linear model \( {\user2 T} = {\user2 H\tau} + {\user2 E} \) is considered for the estimation, where \( {\user2 T} = \left[ {\hat{\tau }_{1(1)} , \ldots ,\hat{\tau }_{1(K)} } \right] \), \( \hat{\tau }_{1(k)} \) defined in (17), E represents error that is a zero-mean random variable with positive-definite covariance matrix R E , and τ is an unknown constant vector and H is a full rank known mixing matrix. For this model, the minimum-variance unbiased linear estimator of τ observing T corresponds to:

$$ \hat{{\user2 \tau }} = \left( {{\user2 H}^{T} {\user2 R_{E}}^{ - 1} {\user2 H}} \right)^{ - 1} {\user2 H}^{T} {\user2 R_{E}}^{ - 1} {\user2 T} $$
(29)

In addition, the minimum mean square error (MMSE) of this estimator is:

$$ MMSE = \left( {{\user2 H}^{T} {\user2 R_{E}}^{ - 1} {\user2 H}} \right)^{ - 1} $$
(30)

Now, we use the system model of (17). Due to the independency of e k , for \( k \in \left\{ {1, \ldots ,K} \right\} \) in E, we have \( {\user2 R}_{E} = diag\left( {\sigma_{1}^{2} , \ldots ,\sigma_{K}^{2} } \right) \), where \( \sigma_{k}^{2} \) is the estimator error variance (e k ). Accordingly, considering the estimator in (13), we have:

$$ \hat{\tau }_{1} = \left( {{\user2 H}^{T} {\user2 H}} \right)^{ - 1} {\user2 H}^{T} {\user2 T} $$
(31)

Here, \( {\user2 T} = \left[ {\hat{\tau }_{1(1)} ,\, \ldots ,\,\hat{\tau }_{1(K)} } \right]^{T} \) and \( {\user2 H} = \left[ {1,\, \ldots ,\,1} \right]^{T} \). Inserting these parameters into (31), we extract (18). Inserting R E and H into (30), we observe that the variance of error of this estimator corresponds to:

$$ \sigma_{{\hat{\tau }_{1} }}^{2} = \frac{1}{{\mathop \sum \nolimits_{k = 1}^{K} \sigma_{k}^{ - 2} }} $$
(32)

Appendix B: Extraction the Cramer–Rao Band of TOA Estimation

Assume that the received signal (3) with bandwidth B is sampled at the Nyquest rate as \( \bar{x} = \left[ {x_{1} , \ldots ,x_{N} } \right] \). It is easy to show that the elements of the Fisher information matrix (FIM) presented in (21) correspond to [23]:

$$ \begin{gathered} J_{mk} = \frac{{\alpha_{m} \alpha_{k}^{*} }}{{2B\sigma_{\upsilon }^{2} }}\mathop \sum \limits_{t = 1}^{N} \frac{{\partial s\left( {t - \tau_{m} } \right)}}{\partial t}\left( {\frac{{\partial s\left( {t - \tau_{k} } \right)}}{\partial t}} \right)^{*} + \frac{{\alpha_{k} \alpha_{m}^{*} }}{{2B\sigma_{\upsilon }^{2} }}\mathop \sum \limits_{t = 1}^{N} \frac{{\partial s\left( {t - \tau_{k} } \right)}}{\partial t}\left( {\frac{{\partial s\left( {t - \tau_{m} } \right)}}{\partial t}} \right)^{*} \hfill \\ \quad \quad \quad {\text{for }}m,k = 1, \ldots ,M \hfill \\ \end{gathered} $$
(33)

If \( s\left( t \right) \) does not change significantly during the time interval between samples, the sum in (33) can be approximated by the following integral [25, 26].

$$ J_{mk} = \frac{{\alpha_{m} \alpha_{k}^{*} }}{{\sigma_{\upsilon }^{2} }}\int\limits_{0}^{N} \frac{{\partial s\left( {t - \tau_{m} } \right)}}{\partial t}\left( {\frac{{\partial s\left( {t - \tau_{k} } \right)}}{\partial t}} \right)^{*} dt + \frac{{\alpha_{k} \alpha_{m}^{*} }}{{\pi N_{0} }}\int\limits_{0}^{N} \frac{{\partial s\left( {t - \tau_{k} } \right)}}{\partial t}\left( {\frac{{\partial s\left( {t - \tau_{m} } \right)}}{\partial t}} \right)^{*} dt $$
(34)

The FIM can be expressed as a scaled product of three simpler matrices:

$$ J = \left( {\sigma_{\upsilon }^{2} } \right)^{ - 1} ({\user2 A}{\user2 S}{\user2 A}^{*} + {\user2 A}^{*} {\user2 S}^{*} {\user2 A}) $$
(35)

where \( A = diag\left( {\alpha_{1} , \ldots ,\alpha_{M} } \right) \) and the element of S are:

$$ S_{mk} = \int\limits_{0}^{N} \frac{{\partial s\left( {t - \tau_{m} } \right)}}{\partial t}\left( {\frac{{\partial s\left( {t - \tau_{k} } \right)}}{\partial t}} \right)^{*} dt + \int\limits_{0}^{N} \frac{{\partial s\left( {t - \tau_{k} } \right)}}{\partial t}\left( {\frac{{\partial s\left( {t - \tau_{m} } \right)}}{\partial t}} \right)^{*} dt $$
(36)

Assuming the observation interval is long enough to contain all multi-paths, we observe that the integral (36) is a function of \( \left| {\tau_{1} - \tau_{2} } \right| \). In that case, S is a real symmetric Toplitz matrix [14].

Now, we find the inverse of matrix J. The m th diagonal element of J −1 is the bound for the variance of m th multi-path delay estimate:

$$ CRB\left( {\tau_{m} } \right) = \left( {J^{ - 1} } \right)_{mm} = \frac{{\sigma_{\upsilon }^{2} }}{{\left| {\alpha_{m} } \right|^{2} }}\left( {S^{ - 1} } \right)_{mm} $$
(37)

We observe that \( \left( {S^{ - 1} } \right)_{mm} \) depends only on the signal waveform and the relative delays of echoes. Therefore, the CRB for estimation of m th multi-path delay depends on the power of the m th echo and relative delay of all echoes.

Next, we simplify (37) assuming M = 2, i.e., the availability of only two dominant multi-path, which models the effect of closely spaced multi-path in wireless channel [25, 26]. As result, we have:

$$ S^{ - 1} = \frac{1}{{\left[ {\mathop \smallint \nolimits \left| {\dot{s}} \right|^{2} \left( t \right)dt} \right]\left[ {1 - \rho^{2} \left( {\left| {\tau_{1} - \tau_{2} } \right|} \right)} \right]}} \times \left( {\begin{array}{*{20}c} 1 & { - \rho \left( {\left| {\tau_{1} - \tau_{2} } \right|} \right)} \\ { - \rho \left( {\left| {\tau_{1} - \tau_{2} } \right|} \right)} & 1 \\ \end{array} } \right) $$
(38)

Now, based on (37) and (38), after some simplification, we can find (21).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pourkhaatoun, M., Zekavat, S.A. High Resolution Cognitive Radio-Based Concatenated Spectrum Time-of-Arrival Estimation. Int J Wireless Inf Networks 19, 341–351 (2012). https://doi.org/10.1007/s10776-012-0196-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10776-012-0196-y

Keywords

Navigation