Skip to main content
Log in

A Model for Spatial Behavior of Multipath Components Pertinent to Indoor Geolocation Using Ray Optics

  • Published:
International Journal of Wireless Information Networks Aims and scope Submit manuscript

Abstract

Challenges for precise indoor geolocation cannot be overcome by using the existing RF models for multipath components (MPCs). These models were designed for communication applications without specific attention to relation among the physical distance between the transmitter and the receiver and characteristics of MPCs pertinent to indoor geolocation applications. In this paper, we propose a novel model for the spatial behavior of MPCs which addresses these issues. This model uses principles of ray optics to explain the spatial evolution of path gains, time-of-arrival, and angle-of-arrival of MPCs observed by a mobile terminal operating in an indoor environment. The relation between the transmitter–receiver separation and the number of paths as well as statistical modeling of lifetime and birth rate of the paths are also incorporated in our model based on empirical data obtained by using a measurement calibrated ray-tracing tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. K. Pahlavan, and A. Levesque, Wireless Information Networks, 2nd ed. Wiley, New York, 2005.

    Book  Google Scholar 

  2. A. Saleh, and R. A. Valenzuela, A statistical model for indoor multipath propagation, IEEE Journal on Selected Areas in Communication, Vol. 5, No. 2, pp. 128–137, 1987.

    Article  Google Scholar 

  3. R. Ganesh, and K. Pahlavan, Statistical modeling and computer simulation of indoor radio channel, IEE Proceedings on Communications, Speech and Vision, Vol. 138, No. 3, pp. 153–161, 1991.

  4. P. Yegani, and C. D. McGillem, A statistical model for the factory radio channel, IEEE Transactions on Communication, Vol. 39, No. 10, pp. 1445–1454, 1991.

    Article  Google Scholar 

  5. H. Hashemi, Impulse response modeling of indoor radio propagation channels, IEEE Journal on Selected Areas in Communications, Vol. 11, pp. 967–978, 1993.

    Article  Google Scholar 

  6. Q. H. Spencer, et al., Modeling statistical time and angle of arrival characteristics of an indoor multipath channel, IEEE Journal on Selected Areas in Communications, Vol. 18, No. 3, pp. 347–360, 2000.

    Article  Google Scholar 

  7. M. Hassan-Ali, and K. Pahlavan, A new statistical model for site-specific indoor radio propagation prediction based geometric optics and geometric probability, IEEE Transactions on Wireless Communications, Vol. 1, No. 1, pp. 112–123, 2002.

    Article  Google Scholar 

  8. D. Cassioli, M. Win, and A. Molisch, The ultra-wide bandwidth indoor channel: from statistical model to simulations, IEEE Journal on Selected Areas in Communications, Vol. 20, No. 6, pp. 1247–1257, 2002.

    Article  Google Scholar 

  9. J. Nielsen, et al., A dynamic model of the indoor channel, Wireless Personal Communications, Vol. 19, No. 2, pp. 91–120, 2001.

  10. T. Zwick, et al., A stochastic multipath channel model including path directions for indoor environments, IEEE Journal on Selected Areas in Communications, Vol. 20, No. 6, pp. 1178–1192, 2002.

  11. C.-C. Chong, et al., A novel wideband dynamic directional indoor channel model based on a Markov process, IEEE Transactions on Wireless Communications, Vol. 4, No. 4, pp. 1539–1552, 2005.

    Article  MathSciNet  Google Scholar 

  12. H. Lee, et al., Multipath characteristics of impulse radio channels, In Proceedings of the IEEE VTC 2000, pp. 2487–2491, 2000.

  13. M. Z. Win, and R. A. Scholtz, On the robustness of ultra-wide bandwidth signals in dense multipath environments, IEEE Communication Letters, Vol. 2, No. 2, pp. 51–53, 1998.

    Article  Google Scholar 

  14. K. Pahlavan, et al., Indoor geolocation in the absence of direct path, IEEE Wireless Communications Magazine, Vol. 13, No. 6, pp. 50–58, 2006.

    Article  Google Scholar 

  15. B. Denis, J. Keignart, and N. Daniele, Impact of NLOS propagation upon ranging precision in UWB systems, In IEEE Conference on Ultra Wideband Systems and Technologies, 2003.

  16. B. Alavi, and K. Pahlavan, Modeling of the distance measure error using UWB indoor radio measurement, IEEE Communication Letters, Vol. 10, No. 4, pp. 275–277, 2006.

    Article  Google Scholar 

  17. K. Pahlavan, P. Krishnamurthy, and J. Beneat, Wideband radio propagation modeling for indoor geolocation applications, IEEE Communications Magazine, Vol. 36, No. 4, pp. 60–65, 1998.

  18. J. Lee, and R. Scholtz, Ranging in a dense multipath environment using an UWB radio link, IEEE Journal on Selected Areas in Communications, Vol. 20, No. 9, pp. 1677–1683, 2002.

    Article  Google Scholar 

  19. S. Gezici, et al., Localization via ultra-wideband radios, IEEE Signal Processing Magazine, Vol. 22, No. 4, pp. 79–84, 2005.

    Article  Google Scholar 

  20. M. Heidari, and K. Pahlavan, A Markov model for dynamic behavior of ranging errors in indoor geolocation systems, IEEE Communication Letters, Vol. 11, No. 12, pp. 934–936, 2007.

    Article  Google Scholar 

  21. D. E. Gustafson, J. M. Elwell, and J. A. Soltz, Innovative indoor geolocation using RF multipath diversity, In IEEE/ION Position, Location, and Navigation Symposium, 2006.

  22. K. Cheun, Performance of direct-sequence spread-spectrum RAKE receivers with random spreading sequences, IEEE Transactions on Communications, Vol. 45, No. 9, pp. 1130–1143, 1997.

    Article  Google Scholar 

  23. N. Kong, and L. B. Milstein, Combined average snr of a generalized diversity selection combining scheme, IEEE Communications Letters, Vol. 3, No. 3, pp. 1556–1560, 1998.

    Google Scholar 

  24. P. Bahl, and V. Padmanabhan, RADAR: an in-building RF-based user location and tracking system, In IEEE INFOCOM: The Conference in Computer Communications, 2000.

  25. F. O. Akgul, and K. Pahlavan, A new ray optical statistical model for multipath characteristics pertinent to indoor geolocation, In IEEE WCNC, Budapest, Hungary, April 2009.

  26. F. O. Akgul, and K. Pahlavan, A new spatial path persistency model for TOA-based indoor geolocation, IEEE Communications Letters, Vol. 13, No. 4, pp. 248–250, 2009.

    Article  Google Scholar 

  27. H. Bertoni, W. Honcharenko, L. R. Maciel, and H. Xia, UHF propagation prediction for wireless personal communications, Proceedings of the IEEE, Vol. 82, No. 9, pp. 1333–1359, 1994.

    Article  Google Scholar 

  28. R. Valenzuela, A ray tracing approach to predicting indoor wireless transmission, In Proceedings of IEEE VTC 1993, pp. 214–218, 1993.

  29. S. Y. Seidel, and T. S. Rappaport, A ray tracing technique to predict path loss and delay spread inside buildings, In IEEE Global Telecommunications Conference, Orlando, FL, December 1992.

  30. F. A. Agelet , F. P. Fontan, and A. Formella, Fast ray-tracing for microcellular and indoor environments, IEEE Transactions on Magnetics, Vol. 33, pp. 1484–1487, 1997.

    Article  Google Scholar 

  31. G. L. Turin, et al., A statistical model of urban multipath propagation, IEEE Transactions on Vehicular Technology, Vol. 21, No. 1, pp. 1–9, 1972.

    Article  Google Scholar 

  32. J. R. P. Petrus, and T. Rappaport, Geometrical-based statistical macrocell channel model for mobile environments, IEEE Transactions on Communications, Vol. 50, No. 3, pp. 495–502, 2002.

    Article  Google Scholar 

  33. D.-H. H. Yung-Hoon Jo, J.-Y. Lee, and S.-H. Kang, Accuracy enhancement for UWB indoor positioning using ray tracing, In Proceedings of IEEE/ION PLANS 2006, San Diego, CA, pp. 565–568, 2006.

  34. F. O. Akgul, and K. Pahlavan, AOA assisted NLOS error mitigation for TOA-based indoor positioning systems, In IEEE MILCOM, Orlando, FL, 2007.

  35. Z. Yang, J. W. Hardin, and C. L. Addy, A score test for overdispersion in Poisson regression based on the generalized Poisson-2 model, Journal of Statistical Planning and Inference, Vol. 139, No. 4, pp. 1514–1521, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  36. Y. Ye, F. Akgul, and K. Pahlavan, Effect of bandwidth, path detection threshold and UDP occurrence on multipath parameters pertinent to indoor geolocation, In IEEE WAMICON, Clearwater, FL, April 2009.

  37. S. F. Mahmoud, and J. R. Wait, Geometrical optical approach for electromagnetic wave propagation in rectangular mine tunnels, Radio Science, Vol. 9, No. 12, pp. 1147–1158, 1974.

    Article  Google Scholar 

  38. W. Q. Malik, C. J. Stevens, and D. J. Edwards, Spatio-temporal ultrawideband indoor propagation modelling by reduced complexity geometric optics, IET Communications, Vol. 1, No. 4, pp. 751–759, 2007.

    Article  Google Scholar 

  39. A. Papoulis, and S. U. Pillai, Probability, Random Variables and Stochastic Processes, 4th ed. McGraw-Hill, New York, 2002.

    Google Scholar 

  40. J. F. Lawless, Statistical Models and Methods for Lifetime Data, Wiley, New York, 1982.

    MATH  Google Scholar 

  41. R. C. Gupta, O. Akman, and S. Lvin, A study of log-logistic model in survival analysis, Biometrika Journal, Vol. 41, No. 4, pp. 431–443, 1999.

    Article  MATH  Google Scholar 

  42. T. Holt, K. Pahlavan, and J. Lee, A graphical indoor radio channel simulator using 2D ray tracing, In IEEE PIMRC, Boston, USA, pp. 411–416, October 1992.

  43. G. German, Q. Spencer, A. Swindlehurst, and R. Valenzuela, Wireless indoor channel modeling: statistical agreement of ray tracing simulations and channel sounding measurements, In IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol. 4, Salt Lake City, UT, pp. 778–781, May 2001.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferit Ozan Akgul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akgul, F.O., Pahlavan, K. A Model for Spatial Behavior of Multipath Components Pertinent to Indoor Geolocation Using Ray Optics. Int J Wireless Inf Networks 20, 328–345 (2013). https://doi.org/10.1007/s10776-013-0225-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10776-013-0225-5

Keywords

Navigation