Skip to main content
Log in

Chaos Synchronization of Complex Network Based on Signal Superposition of Single Variable

  • Published:
International Journal of Wireless Information Networks Aims and scope Submit manuscript

Abstract

Chaos synchronization of complex network with uncertain topological structure and coupling coefficient is used to study. By designing appropriate kinetic equation of network node, the chaos synchronization of the complex network is achieved. The unknown parameters and transported values of all the kinetic equations are identified simultaneously in the process of synchronization. When sets the parameter CT for a specific value, the transported values of complex network node is the superposition of specific parameter of passed node. Lorenz system is taken for example to demonstrate the effectiveness of the presented method for a complex network of arbitrary topological type, and the dynamics analysis of the Lorenz chaotic system is given, the results we get including the Lyapunov exponents spectrum and its corresponding bifurcation diagram, and its corresponding analysis of SE complexity algorithm and C0 complexity algorithm are analysis briefly. In this paper, 0–1 test is given respectively. Discusses the influence of parameters on the synchronization performance. It is found that the synchronization performance of the complex network is very stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. L. M. Pecora and T. L. Carroll, Synchronization in chaotic systems, Physical Review Letters, Vol. 64, No. 8, pp. 821–824, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Khan, Hybrid function projective synchronization of chaotic systems via adaptive control, International Journal of Dynamics and Control, Vol. 5, No. 4, pp. 1114–1121, 2016.

    Article  MathSciNet  Google Scholar 

  3. A. Bouzeriba, A. Boulkroune and T. Bouden, Projective synchronization of two different fractional-order chaotic systems via adaptive fuzzy control, Neural Computing and Applications, Vol. 27, No. 5, pp. 1349–1360, 2016.

    Article  MATH  Google Scholar 

  4. S. Vaidyanathan, V. T. Pham and C. K. Volos, Adaptive backstepping control, synchronization and circuit simulation of a 3-D Novel Jerk chaotic system with two hyperbolic sinusoidal nonlinearities, Archives of Control Sciences, Vol. 24, No. 3, pp. 375–403, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Vaidyanathan, Analysis, adaptive control and synchronization of a Novel 4-d hyperchaotic hyperjerk system via backstepping control method, Archives of Control Sciences, Vol. 26, No. 3, pp. 311–338, 2016.

    Article  MathSciNet  Google Scholar 

  6. X. Lin, S. Zhou and H. Li, Chaos and synchronization in complex fractional-order Chua’s system, International Journal of Bifurcation and Chaos, Vol. 26, No. 03, pp. 1595–1603, 2016.

    Article  MATH  Google Scholar 

  7. J. Yan, X. Liu and D. Feng, New criteria for the robust impulsive synchronization of uncertain chaotic delayed nonlinear systems, Nonlinear Dynamics, Vol. 79, No. 1, pp. 1–9, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  8. C. Wang, Y. He, J. Ma, et al., Parameters estimation, mixed synchronization, and antisynchronization in chaotic systems, Complexity, Vol. 20, No. 1, pp. 64–73, 2015.

    Article  MathSciNet  Google Scholar 

  9. M. Shahzad, V. T. Pham, M. A. Ahmad, et al., Synchronization and circuit design of a chaotic system with coexisting hidden attractors, The European Physical Journal Special Topics, Vol. 224, No. 8, pp. 1637–1652, 2015.

    Article  Google Scholar 

  10. I. Ahmad, A. B. Saaban, A. B. Ibrahim, et al., Global chaos synchronization of new chaotic system using linear active control, Complexity, Vol. 21, No. 1, pp. 379–386, 2015.

    Article  MathSciNet  Google Scholar 

  11. K. Ding and Q. Han, Master–slave synchronization criteria for chaotic hindmarsh–rose neurons using linear feedback control, Complexity, Vol. 21, No. 5, pp. 319–327, 2016.

    Article  MathSciNet  Google Scholar 

  12. L. M. Pecora and T. L. Carroll, Synchronization of chaotic systems, Chaos, Vol. 25, No. 9, pp. 2891–5100, 2015.

    Article  MATH  Google Scholar 

  13. D. H. Ji, J. H. Park, W. J. Yoo, S. C. Won and S. M. Lee, Synchronization criterion for Lur’e type complex dynamical networks with time-varying delay, Physics Letters A, Vol. 374, No. 10, pp. 1218–1227, 2010.

    Article  MATH  Google Scholar 

  14. N. Kouvaris, A. Provata and D. Kugiumtzis, Detecting synchronization in coupled stochastic ecosystem networks, Physics Letters A, Vol. 374, No. 4, pp. 507–515, 2010.

    Article  MATH  Google Scholar 

  15. E. J. Agnes, R. Erichsen Jr. and L. G. Brunnet, Synchronization regimes in a map-based model neural network, Physica A, Vol. 389, No. 3, pp. 651–658, 2010.

    Article  Google Scholar 

  16. K. Li and C. H. Lai, Adaptive–impulsive synchronization of uncertain complex dynamical networks, Physics Letters A, Vol. 372, No. 10, pp. 1601–1606, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  17. Y. C. Hung, Y. T. Huang, M. C. Ho and C. K. Hu, Paths to globally generalized synchronization in scale-free networks, Physical Review E, Vol. 77, No. 1, p. 016202, 2008.

    Article  Google Scholar 

  18. G. M. He and J. Y. Yang, Adaptive synchronization in nonlinearly coupled dynamical networks, Chaos, Solitons and Fractals, Vol. 38, No. 5, pp. 1254–1259, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  19. P. Checco, M. Biey and L. Kocarev, Adaptive synchronization in nonlinearly coupled dynamical networks, Chaos, Solitons and Fractals, Vol. 35, No. 3, pp. 562–577, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  20. A. N. Pisarchik, R. Jaimes-Reátegui, R. Sevilla-Escoboza and S. Boccaletti, Experimental approach to the study of complex network synchronization using a single oscillator, Physical Review E, Vol. 79, No. 5, p. 055202, 2009.

    Article  Google Scholar 

  21. L. Chen, C. Qiu and H. B. Huang, Synchronization with on-off coupling: Role of time scales in network dynamics, Physical Review E, Vol. 79, No. 4, p. 045101, 2009.

    Article  Google Scholar 

  22. L. Lü and L. Luan, Lag synchronization of spatiotemporal chaos in a weighted network with ring connection, Acta Physica Sinica, Vol. 58, No. 7, pp. 4463–4468, 2009 (in Chinese).

    MATH  Google Scholar 

  23. Y. Zhang and Q. L. Han, Network-based synchronization of delayed neural networks, IEEE Transactions on Circuits and Systems I Regular Papers, Vol. 190, No. 3, pp. 155–164, 2016.

    MathSciNet  Google Scholar 

  24. T. Yang, Z. Meng, G. Shi, et al., Network synchronization with nonlinear dynamics and switching interactions, IEEE Transactions on Automatic Control, Vol. 61, No. 10, pp. 3103–3108, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  25. X. Wu, Z. H. Guan, Z. Wu, et al., Chaos synchronization between Chen system and Genesio system, Physics Letters A, Vol. 364, No. 6, pp. 484–487, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  26. A. E. Matouk, Chaos synchronization of a fractional-order modified Van der Pol–Duffing system via new linear control, backstepping control and Takagi–Sugeno fuzzy approaches, Complexity, Vol. 21, No. S1, pp. 116–124, 2016.

    Article  MathSciNet  Google Scholar 

  27. A. Ouannas, A. T. Azar and S. Vaidyanathan, A robust method for new fractional hybrid chaos synchronization, Mathematical Methods in the Applied Sciences, Vol. 40, No. 5, pp. 1804–1812, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  28. B. Xin, L. Liu, G. Hou, et al., Chaos synchronization of nonlinear fractional discrete dynamical systems via linear control, Entropy, Vol. 19, No. 7, p. 351, 2017.

    Article  Google Scholar 

  29. M. M. Aziz and S. F. Al-Azzawi, Hybrid chaos synchronization between two different hyperchaotic systems via two approaches, Optik-International Journal for Light and Electron Optics, Vol. 138, pp. 328–340, 2017.

    Article  Google Scholar 

  30. A. T. Azar, A. Ouannas and S. Singh, Control of new type of fractional chaos synchronization. In International Conference on Advanced Intelligent Systems and Informatics, pages 47–56. Springer, Cham, 2017.

  31. K. Sun, S. He, C. Zhu and Y. He, Analysis of chaotic complexity characteristics based on C0 algorithm, Acta Electronica Sinica, Vol. 41, No. 9, pp. 1765–1771, 2013.

    Google Scholar 

  32. K. Sun, X. Liu and C. Zhu, The 0–1 test algorithm for chaos and its applications, Chinese Physics B: English Edition, Vol. 19, No. 11, pp. 200–206, 2010.

    Google Scholar 

Download references

Acknowledgements

This paper is supported by Natural Science Foundation of Liaoning, China (2015020031 and 20170540060), Science and Technology Project of Dalian, China (2015A11GX011) and Basic Scientific Research Projects of Colleges and Universities of Liaoning, China (2017J045 and 2017J046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Li, B., Mou, J. et al. Chaos Synchronization of Complex Network Based on Signal Superposition of Single Variable. Int J Wireless Inf Networks 25, 258–268 (2018). https://doi.org/10.1007/s10776-018-0386-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10776-018-0386-3

Keywords

Navigation