Skip to main content
Log in

Is the Frontier Shifting into the Right Direction? A Qualitative Analysis of Acceptance Factors for Novel Firefighter Information Technologies

  • Published:
Information Systems Frontiers Aims and scope Submit manuscript

Abstract

The use of innovative information technologies such as unmanned aerial vehicles, intelligent protective clothing, or digital plans is frequently pursued to improve the effectiveness of emergency response processes. So far, however, little effort has been made to study the acceptance of such innovative information technologies by firefighters, who are supposed to use them in their daily practice. In this paper, we present the results of a qualitative study, in which we interviewed 21 members of German fire departments to gain insights into the perceived potential of seven emerging technologies from a Diffusion of Innovations perspective. The results suggest that firefighters find emerging technologies to deliver potential advantages. Factors characterizing disadvantages, the perceived compatibility, and complexity of emerging technologies were viewed as potentially substantial acceptance barriers, however. These factors ought to be taken into consideration when designing new technologies to ensure that they indeed meet the practical needs of the users.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ainuddin, S., & Routray, J. K. (2012). Institutional framework, key stakeholders and community preparedness for earthquake induced disaster management in Balochistan. Disaster Prevention and Management, 21(1), 22–36.

    Article  Google Scholar 

  • Barrado, C., Messeguer, R., Lopez, J., Pastor, E., Santamaria, E., & Royo, P. (2010). Wildfire monitoring using a mixed air-ground mobile network. IEEE Pervasive Computing, 9(4), 24–32.

    Article  Google Scholar 

  • Bharosa, N., Lee, J., & Janssen, M. (2010). Challenges and obstacles in sharing and coordinating information during multi-agency disaster response: Propositions from field exercises. Information Systems Frontiers, 12(1), 49–65.

    Article  Google Scholar 

  • Bogner, A., Littig, B., & Menz, W. (2009). Interviewing Experts. London: Palgrave Macmillan.

  • Bretschneider, N., Brattke, S., & Rein, K. (2006). Head Mounted Displays for Firefighters. Paper presented at the 3rd international forum on applied wearable computing.

  • Bunker, D., Levine, L., & Woody, C. (2015). Repertoires of collaboration for common operating pictures of disasters and extreme events. Information Systems Frontiers, 17(1), 51–65.

    Article  Google Scholar 

  • Carton, A., & Dunne, L. E. (2013). Tactile distance feedback for firefighters. In A. Schmidt, A. Bulling, & C. Holz (Eds.), Proceedings of the 4th Augmented Human International Conference, pp. 58–64.

  • Chen, R., Sharman, R., Rao, H. R., & Upadhyaya, S. J. (2008). Coordination in emergency response management. Communications of the ACM, 51(5), 66–73.

    Article  Google Scholar 

  • Danielsson, M. (1998). The cognitive structure of decision making tasks in major versus minor emergency response. In P. A. Scott, R. S. Bridges, & J. Chasterrs (Eds.), Proceedings of the Global Ergonomics Conference.

  • Everaerts, J. (2008). The use of unmanned aerial vehicles (UAVs) for remote sensing and mapping. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37, 1187–1192.

    Google Scholar 

  • Freßmann, A., Bergmann, R., Taylor, B., Diamond, B., & Carr-Smith, G. (2007). Mobile knowledge management support in fire service Organisations. In A. Oberweis (Ed.), eOrganisation (pp. 557–574). Karlsruhe: Univ.-Verl.

    Google Scholar 

  • Given, L. M. (2008). The SAGE encyclopedia of qualitative research methods. Los Angeles: Sage.

    Book  Google Scholar 

  • Granlund, R., Granlund, H., Johansson, B., & Dahlbäck, N. (2010). The effect of a geographical information system on communication in professional emergency response organizations. Paper presented at the 7th International Conference on Information Systems for Crisis Response and Management, Seattle, USA, May 2-5, 2010.

  • Ha, K. M. (2012). In pursuit of ideal emergency planning in Korea. Disaster Prevention and Management, 21(5), 624–633.

    Article  Google Scholar 

  • Hee, N. (2015). Rescue robots helping Austin firefighters save lives. http://kxan.com/2015/04/19/rescue-robots-could-soon-help-austin-firefighters-save-lives/. Accessed 2016–04-20.

  • Hong, J. H., Matson, E. T., & Taylor, J. M. (2014a). Design of Knowledge-Based Communication between human and robot using ontological semantic Technology in Firefighting Domain. Paper presented at the Conference on Robot Intelligence Technology and Applications.

  • Hong, J. H., Taylor, J., & Matson, E. T. (2014b). Natural multi-language interaction between firefighters and fire fighting robots. Paper presented at the International Joint Conferences on Web Intelligence and Intelligent Agent Technologies.

  • Hossain, M. A., & Quaddus, M. (2015). Radio frequency identification (RFID) adoption: A cross-sectional comparison of voluntary and mandatory contexts. Information Systems Frontiers, 17(5), 1057–1076.

    Article  Google Scholar 

  • Janssen, M., Lee, J., Bharosa, N., & Cresswell, A. (2010). Advances in multi-agency disaster management: Key elements in disaster research. Information Systems Frontiers, 12(1), 1–7.

    Article  Google Scholar 

  • Johnson, R. (2005). A case study in multiagency GIS for managing a large-scale natural disaster. In Geo-information for Disaster Management (pp. 155–170). Berlin, Heidelberg: Springer Berlin Heidelberg.

  • Juhnke, J. (2011). The future of firefighting - A HMD-AR UI concept for first responders. https://www.youtube.com/watch?v=QBAnr2gQTH0. Accessed 2016–04-20.

  • Kalabokidis, K., Xanthopoulos, G., Moore, P., Caballero, D., Kallos, G., Llorens, J., et al. (2012). Decision support system for forest fire protection in the euro-Mediterranean region. European Journal of Forest Research, 131(3), 597–608.

    Article  Google Scholar 

  • Kartas, A., & Goode, S. (2012). Use, perceived deterrence and the role of software piracy in video game console adoption. Information Systems Frontiers, 14(2), 261–277.

    Article  Google Scholar 

  • Kim, J. H., Keller, B., & Lattimer, B. Y. (2013). Sensor fusion based seek-and-find fire algorithm for intelligent firefighting robot. Paper presented at the IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

  • King, W. R., & He, J. (2005). Understanding the role and methods of meta-analysis in IS research. Communications of the Association for Information Systems, 16(1), 665–686.

    Google Scholar 

  • Klann, M. (2009). Tactical navigation support for firefighters: The life net ad-hoc sensor-network and wearable system. Paper presented at the Second International Workshop on Mobile Information Technology for Emergency Response.

  • Klann, M., & Geissler, M. (2012). Experience prototyping: A new approach to designing firefighter navigation support. IEEE Pervasive Computing, 11(4), 68–77.

    Article  Google Scholar 

  • Koch, R., Harnasch, R., Lee, B.-S., & Pottebaum, J. (2007). Rapid and precise mobile data processing for fire brigades and rescue services (SAFeR/GÜTER/SHARE). In M. J. Smith & G. Salvendy (Eds.), Human Interface and the Management of Information. Interacting in Information Environments (Vol. 4558, pp. 1050-1059, Lecture Notes in Computer Science). Berlin, Heidelberg: Springer Berlin Heidelberg.

    Google Scholar 

  • Kozlovszky, M., & Pavlinic, D. Z. (2014). Environment and situation monitoring for firefighter teams. Paper presented at the International Symposium on Computational Intelligence and Informatics.

  • Lewandowski, A., Schulz, A., Koch, R., & Wietfeld, C. (2009). Mobile IT Applikation, vernetzte Sensoren und Kommunikationskonzepte zum Schutz der Einsatzkräfte bei der Feuerwehr. Paper presented at the Workshop zur IT Unterstützung von Rettungskräften.

  • Liu, H., Li, J., Xie, Z., Lin, S., Whitehouse, K., Stankovic, J. A., et al. (2010). Automatic and robust breadcrumb system deployment for indoor firefighter applications. In S. Banerjee, S. Keshav, & A. Wolman (Eds.), Proceedings of the 8th international conference on Mobile Systems, Applications, and Services (pp. 21-34).

  • Luyten, K., Winters, F., Coninx, K., Naudts, D., & Moerman, I. (2006). A situation-aware mobile system to support Fire brigades in emergency situations. In R. Meersman (Ed.), On the move to meaningful internet systems 2006 (Vol. 4278, pp. 1966-1975, Lecture Notes in Computer Science). Berlin, Heidelberg: Springer Berlin Heidelberg.

  • Majchrzak, A., & More, P. H. B. (2011). Emergency! Web 2.0 to the rescue! Communications of the ACM, 54(4), 125–132.

    Article  Google Scholar 

  • Mallick, D. L., Rahman, A., Alam, M., Juel, A. S. M., Ahmad, A. N., & Alam, S. S. (2005). Case study 3: Bangladesh floods in Bangladesh: A shift from disaster management towards disaster preparedness. IDS Bulletin, 36(4), 53–70.

    Article  Google Scholar 

  • Maza, I., Caballero, F., Capitán, J., Martínez-de-Dios, J. R., & Ollero, A. (2011). Experimental results in multi-UAV coordination for disaster management and civil security applications. Journal of Intelligent and Robotic Systems, 61(1–4), 563–585.

    Article  Google Scholar 

  • Mehrotra, S., Butts, C., Kalashnikov, D., Venkatasubramanian, N., Rao, R., Chockalingam, G., et al. (2004). Project rescue: Challenges in responding to the unexpected. Proceedings of SPIE - The International Society for Optical Engineering, 5304, 179–192.

    Google Scholar 

  • Miles, M. B., & Huberman, A. M. (1999). Qualitative data analysis. London: Sage.

    Google Scholar 

  • Monares, A., Ochoa, S. F., Pino, J. A., Herskovic, V., & Neyem, A. (2009). MobileMap: A collaborative application to support emergency situations in urban areas. Paper presented at the 13th international conference on computer supported cooperative work in design.

  • Moore, G., & Benbasat, I. (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation. Information Systems Research, 2(3), 192–222.

    Article  Google Scholar 

  • Myers, M. D., & Newman, M. (2007). The qualitative interview in IS research: Examining the craft. Information and Organization, 17(1), 2–26.

    Article  Google Scholar 

  • Neal, D. M. (1997). Reconsidering the phases of disasters. International Journal of Mass Emergencies and Disasters, 15(2), 239–264.

    Google Scholar 

  • Panangadan, A., Monacos, S., Burleigh, S., Joswig, J., James, M., Chow, E., et al. (2012). A system to provide real-time collaborative situational awareness by web enabling a distributed sensor network. Paper presented at the the First ACM SIGSPATIAL Workshop.

  • Park, J. H., Baek, I. J., Han, S. J., & Moon, Y. E. (2015). SAFT: Study of sensor unit for fall prevention in blocked vision. In K. Mase, M. Langheinrich, D. Gatica-Perez, H. Gellersen, T. Choudhury, & K. Yatani (Eds.), Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing (pp. 177-180).

  • Piotrowski, K., Sojka, A., & Langendoerfer, P. (2010). Body area network for first responders. In V. C. M. Leung, A. V. Vasilakos, T. Falck, K. Qayumi, & X. Wang (Eds.), Proceedings of the Fifth International Conference on Body Area Networks (pp. 37-40).

  • Prasanna, R., Yang, L., & King, M. (2011). Evaluation of a software prototype for supporting fire emergency response. Paper presented at the 8th International Conference on Information Systems for Crisis Response and Management, Lisbon, Portugal, May 8-11, 2011.

  • Quaritsch, M., Kuschnig, R., Hellwagner, H., Rinner, B., Adria, A., & Klagenfurt, U. (2011). Fast aerial image acquisition and mosaicking for emergency response operations by collaborative UAVs. Paper presented at the 8th International Conference on Information Systems for Crisis Response and Management, Lisbon, Portugal, May 8-11, 2011.

  • Ramirez, L., & Dyrks, T. (2010). Designing for high expectations: Balancing ambiguity and thorough specification in the design of a wayfinding tool for firefighters. In O. W. Bertelsen, & P. Krogh (Eds.), Proceedings of the 8th ACM Conference (pp. 390-399).

  • Ramirez, L., Denef, S., & Dyrks, T. (2009). Towards human-centered support for indoor navigation. In D. R. Olsen, R. B. Arthur, K. Hinckley, M. R. Morris, S. Hudson, & S. Greenberg (Eds.), Proceedings of the 27th International Conference on Human Factors in Computing Systems (pp. 1279).

  • Ramirez, L., Dyrks, T., Gerwinski, J., Betz, M., Scholz, M., & Wulf, V. (2012). Landmarke: An ad hoc deployable ubicomp infrastructure to support indoor navigation of firefighters. Personal and Ubiquitous Computing, 16(8), 1025–1038.

    Article  Google Scholar 

  • Rogers, E. M. (1995). Diffusion of innovations (4. ed.). New York: Free Press.

    Google Scholar 

  • Rubin, A., & Babbie, E. R. (2006). Essential research methods for social work. Belmont: Brooks Cole.

    Google Scholar 

  • Salim, F., Belbasis, A., Prohasky, D., Houshyar, S., & Fuss, F. K. (2014). Design and evaluation of smart wearable undergarment for monitoring physiological extremes in firefighting. In L. Dunne, T. Martin, & M. Beigl (Eds.), Proceedings of the 2014 ACM International Symposium on Wearable Computers (pp. 249-254).

  • Schlauderer, S., Overhage, S., & Weidinger, J. (2016). New Vistas for Firefighter Information Systems? Towards a Systematic Evaluation of Emerging Technologies from a Task-Technology Fit Perspective. Paper presented at the 49th Hawaii international conference on system sciences.

  • Shahid, A. R., & Elbanna, A. (2015). The impact of crowdsourcing on Organisational practices: The case of Crowdmapping. Paper presented at the European Conference of Information Systems.

  • Shaw, R. (2006). Indian Ocean tsunami and aftermath: Need for environment-disaster synergy in the reconstruction process. Disaster Prevention and Management, 15(1), 5–20.

    Article  Google Scholar 

  • Shen, S., & Shaw, M. (2004). Managing coordination in emergency response systems with information technologies. Paper presented at the Americas Conference on Information Systems.

  • Smart@fire (2013). Innovation Platform: Synthesis. http://www.smartatfire.eu/media/31471/addestino_innovation-platform-results.pdf. Accessed 2016–04-20.

  • Takahagi, K., Ishida, T., Noda, S., Sakuraba, A., Uchida, N., & Shibata, Y. (2015). Proposal of the fire fighting support system for the volunteer fire company. Proceedings of the 29th International Conference on Advanced Information Networking and Applications, Workshops.

  • Talavera, G., Martin, R., Rodríguez-Alsina, A., Garcia, J., Fernández, F., & Carrabina, J. (2012). Protecting firefighters with wearable devices. Proceedings of the International Conference on Ubiquitous Computing and Ambient Intelligence.

  • Tornatzky, L. G., & Klein, K. J. (1982). Innovation characteristics and innovation adoption-implementation: A meta-analysis of findings. IEEE Transactions on Engineering Management, 29(1), 28–45.

    Article  Google Scholar 

  • Turoff, M., Chumer, M., Van de Walle, B., & Yao, X. (2004). The design of a dynamic emergency response management information system. Journal of Information Technology, Theory and Applications, 5(4), 1–36.

    Google Scholar 

  • van Persie, M., Oostdijk, A., Fix, J., van Sijl, M. C., & Edgardh, L. (2011). Real-time UAV based geospatial video integrated into the fire brigades crisis management GIS system. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 38, 173–175.

    Google Scholar 

  • Webster, J., & Watson, R. T. (2002). Analyzing the past to prepare for the future: Writing a literature review. MIS Quarterly, 26(2), xiii–xxiii.

    Google Scholar 

  • White, T. (2015). Making Sailors 'SAFFiR' - Navy Unveils Firefighting Robot Prototype at Naval Tech EXPO. http://www.navy.mil/submit/display.asp?story_id=85459. Accessed 2016–04-20.

  • Will, H., Hillebrandt, T., & Kyas, M. (2012). Wireless sensor networks in emergency scenarios: The feuer where deployment. 1st ACM international workshop on Sensor-Enhanced Safety and Security in Public Spaces.

  • Wilson J., Steingart D., Romero R., Reynolds J., Mellers E., Redfern A., et al. (2005). Design of monocular head-mounted displays for increased indoor firefighting safety and efficiency. Proceedings of SPIE - The International Society for Optical Engineering.

  • Wilson, J., Bhargava, V., Redfern, A., & Wright, P. (2007). A wireless sensor network and incident command interface for urban firefighting. In 2007 Fourth Annual International Conference on Mobile and Ubiquitous Systems: Networking & Services.

  • Yang, L. (2007). On-site information sharing for emergency response management. Journal of Emergency Management, 5(5), 55–64.

    Google Scholar 

  • Yang, L., Prasanna, R., & King, M. (2009). On-site information Systems Design for Emergency First Responders. Journal of Information Technology, Theory and Applications, 10(1), 5–27.

    Google Scholar 

  • Yin, R. K. (2014). Case Study Research: Design and Methods (5ed.). Thousand Oaks: SAGE.

    Google Scholar 

  • Zhou, T. (2015). Understanding user adoption of location-based services from a dual perspective of enablers and inhibitors. Information Systems Frontiers, 17(2), 413–422.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Weidinger.

Appendix

Appendix

Table 10 Overview of the acceptance factors highlighted by the experts (values in %)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weidinger, J., Schlauderer, S. & Overhage, S. Is the Frontier Shifting into the Right Direction? A Qualitative Analysis of Acceptance Factors for Novel Firefighter Information Technologies. Inf Syst Front 20, 669–692 (2018). https://doi.org/10.1007/s10796-017-9785-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10796-017-9785-8

Keywords

Navigation