Skip to main content

Advertisement

Log in

Interdependency Analysis in Security Investment against Strategic Attacks

  • Published:
Information Systems Frontiers Aims and scope Submit manuscript

Abstract

Information security investment is of high importance in management of IT infrastructure. There are many researches focused on game theoretical modeling and analysis of security investment of interdependent firms against potential security attacks. However, these studies usually are not concerned with dynamic and strategic nature of attacks which are increasingly important features of today’s cyber systems. Strategic attackers are those who are able to substitute their investments among targets over time by shifting investments towards poorly protected targets in order to obtain more potential financial gains. In this paper we try to analyze the effects of interdependency in security investment of firms against strategic attackers. Note that although there are a limited number of works that consider the strategic nature of attack, they model the defenders as a set of isolated nodes. Hence the positive externality caused by interconnection of the firms is not considered in these models. We consider both the attackers’ actual strategic behaviors (that causes negative externality via the possibility of substituting the target) as well as structural effects of the networked firms (that leads to positive externality via attack propagation). We propose a differential game among the networked firms in which attackers act strategically. In the proposed game, by employing a linear substitution model for characterizing the process of target selection by the attacker, the open-loop Nash solutions are highlighted in an analytical form. The analytical results show how interconnectivity between firms and the strategic behavior of the attacker determines the firms’ incentives for security investment. It is shown that overinvestment or underinvestment could occur depending on the degree of interdependency among the given firms. Accordingly we designed mechanisms to encourage the firms to invest at a socially optimal level. The achieved results in this paper helps security designers to better formulate their policies in tackling strategic attackers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Amin, S., Schwartz, G. A., & Sastry, S. S. (2013). Security of interdependent and identical networked control systems. Automatica, 49, 186–192.

    Article  Google Scholar 

  • Bagchi, K., & Udo, G. (2003). An analysis of the growth of computer and internet security breaches. Communications of the Association for Information Systems, 12, 46.

    Article  Google Scholar 

  • Bhatt, S. C., & Pant, D. (2011). Cyber crime in India. International Journal of Advanced Research in Computer Science, 2.

  • Böhme, R. (2012). Security audits revisited. In Financial cryptography and data security (pp. 129–147). Springer.

  • Camp, L. J., & Wolfram, C. (2000). Pricing security. In Proceedings of the CERT information survivability workshop (pp. 31–39).

    Google Scholar 

  • Cavusoglu, H., Raghunathan, S., & Yue, W. T. (2008). Decision-theoretic and game-theoretic approaches to IT security investment. Journal of Management Information Systems, 25, 281–304.

    Article  Google Scholar 

  • Ezhei, M., & Tork Ladani, B. (2017). Information sharing vs. privacy: A game theoretic analysis. Expert Systems with Applications, 88, 327–337.

    Article  Google Scholar 

  • Fang, F., Parameswaran, M., Zhao, X., & Whinston, A. B. (2014). An economic mechanism to manage operational security risks for inter-organizational information systems. Information Systems Frontiers, 16, 399–416.

    Article  Google Scholar 

  • Gao, X., Zhong, W., & Mei, S. (2013). Information security investment when hackers disseminate knowledge. Decision Analysis, 10, 352–368.

    Article  Google Scholar 

  • Geer, D., Bace, R., Gutmann, P., Metzger, P., Pfleeger, C., Querterman, J., et al. (2003). Cyberinsecurity: The cost of monopoly how the dominance of microsoft’s products poses a risk to security. In Computer & Communications Industry Association Report.

    Google Scholar 

  • Gordon, L. A., & Loeb, M. P. (2004). The economics of information security investment. In Economics of information security (pp. 105–125). Springer.

  • Gordon, L. A., Loeb, M. P., & Lucyshyn, W. (2003). Sharing information on computer systems security: An economic analysis. Journal of Accounting and Public Policy, 22, 461–485.

    Article  Google Scholar 

  • Guan, P., He, M., Zhuang, J., & Hora, S. C. (2017). Modeling a Multitarget attacker–defender game with budget constraints. Decision Analysis, 14, 87–107.

    Article  Google Scholar 

  • Hasheminasab, S.A., & Tork Ladani,B. (2018). Security Investment in Contagious Networks. Risk Analysis.

  • Hausken, K. (2006). Returns to information security investment: The effect of alternative information security breach functions on optimal investment and sensitivity to vulnerability. Information Systems Frontiers, 8, 338–349.

    Article  Google Scholar 

  • Jang-Jaccard, J., & Nepal, S. (2014). A survey of emerging threats in cybersecurity. Journal of Computer and System Sciences, 80, 973–993.

    Article  Google Scholar 

  • Jiang, L., Anantharam, V., & Walrand, J. (2011). "How bad are selfish investments in network security?," Networking. IEEE/ACM Transactions on, 19, 549–560.

    Article  Google Scholar 

  • Krebs, B. (2014). Email attack on vendor set up breach at target. Krebs on Security, February, vol., 12.

  • Kumar, V. A., Rajaraman, R., Sun, Z., & Sundaram, R. (2010). Existence theorems and approximation algorithms for generalized network security games. In Distributed computing systems (ICDCS), 2010 I.E. 30th international conference on (pp. 348–357).

    Chapter  Google Scholar 

  • Laszka, A., Felegyhazi, M., & Buttyan, L. (2014). A survey of interdependent information security games. ACM Computing Surveys (CSUR), 47, 23.

    Article  Google Scholar 

  • Lelarge, M. (2012). Coordination in network security games: A monotone comparative statics approach. Selected Areas in Communications, IEEE Journal on, 30, 2210–2219.

    Article  Google Scholar 

  • W. Saad, T. Alpcan, T. Basar, and A. Hjorungnes, "Coalitional game theory for security risk management," in Internet monitoring and protection (ICIMP), 2010 fifth international conference on, 2010, pp. 35–40.

  • Schaefer, I., Rabiser, R., Clarke, D., Bettini, L., Benavides, D., Botterweck, G., Pathak, A., Trujillo, S., & Villela, K. (2012). Software diversity: State of the art and perspectives. International Journal on Software Tools for Technology Transfer, 14, 477–495.

    Article  Google Scholar 

  • Theodorakopoulos, G., Le Boudec, J.-Y., & Baras, J. S. (2013). "Selfish response to epidemic propagation," Automatic Control. IEEE Transactions on, 58, 363–376.

    Google Scholar 

  • Wu, Y., Feng, G., & Fung, R. Y. (2017). Comparison of information security decisions under different security and business environments. Journal of the Operational Research Society, 1–15.

  • Zhao, X., Xue, L., & Whinston, A. B. (2013). Managing interdependent information security risks: Cyberinsurance, managed security services, and risk pooling arrangements. Journal of Management Information Systems, 30, 123–152.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behrouz Tork Ladani.

Appendices

Appendix 1: Stability Analysis of Equilibrium-Decentralized Decision Case

An equilibrium \( \left({c}_i^{\infty },{\lambda}_{ii}^{\infty },{\lambda}_{ij}^{\infty}\right) \) is a solution of \( \frac{\partial {\lambda}_{ii}(t)}{\partial t}=0,\frac{\partial {\lambda}_{ij}(t)}{\partial t}=0,\frac{d{c}_i(t)}{dt}=0 \), where, the optimality condition \( \frac{\partial {H}_i(t)}{\partial {z}_i(t)}=0 \) must hold, or equivalently, where, \( {z}_i^a\left(\mathrm{t}\right) \) is expressed explicitly in terms of state and co-state through Eq. (33).

$$ {z}_i^a\left(\mathrm{t}\right)={\left[\frac{{\beta \varepsilon}_i{L}_i{\left({c}_i^a(t)\right)}^{\phi }}{1+{\lambda}_{ii}\left(\mathrm{t}\right)-\omega \sum \limits_{k=1,\mathrm{k}\ne i}^n{\lambda}_{ik}(t)}\right]}^{1/\left(\beta +1\right)} $$
(33)

An interior steady state \( \left({c}_i^{\infty },{\lambda}_{ii}^{\infty },{\lambda}_{ij}^{\infty}\right) \), defined based on optimal control zi, is the result of the following system of nonlinear equations:

$$ \delta {c}_i(t)-\frac{1-\omega \left(n-1\right)}{1+\left(n-1\right)\eta }{\left[\frac{\beta \varepsilon L{\left({c}_i^a(t)\right)}^{\phi }}{1+{\lambda}_{ii}\left(\mathrm{t}\right)-\omega \sum \limits_{k=1,\mathrm{k}\ne i}^n{\lambda}_{ik}(t)}\right]}^{1/\left(\beta +1\right)}=0 $$
(34)
$$ \left(\rho -\delta \right){\lambda}_{ii}\left(\mathrm{t}\right)+\phi \varepsilon L{\left({c}_i^a(t)\right)}^{\phi -1}{\left[\frac{1+{\lambda}_{ii}\left(\mathrm{t}\right)-\omega \sum \limits_{k=1,\mathrm{k}\ne i}^n{\lambda}_{ik}(t)}{{\beta \varepsilon}_i{L}_i{\left({c}_i^a(t)\right)}^{\phi }}\right]}^{\beta /\left(\beta +1\right)}=0 $$
(35)
$$ \left(\rho -\delta \right){\lambda}_{ij}\left(\mathrm{t}\right)+\eta \phi \varepsilon L{\left({c}_j^a(t)\right)}^{\phi -1}{\left[\frac{1+{\lambda}_{ii}\left(\mathrm{t}\right)-\omega \sum \limits_{k=1,\mathrm{k}\ne i}^n{\lambda}_{ik}(t)}{{\beta \varepsilon}_i{L}_i{\left({c}_i^a(t)\right)}^{\phi }}\right]}^{\beta /\left(\beta +1\right)}=0 $$
(36)

To evaluate the stability of the above steady state, we compute the Jacobian matrix of the system of above nonlinear equations as follows:

$$ \left(\begin{array}{ccc}-\frac{\phi }{\beta +1}\left(1-\omega \left(n-1\right)\right)\frac{z_i^a\left(\infty \right)}{c_i^a\left(\infty \right)}+\delta & \frac{1}{\beta +1}\frac{1-\omega \left(n-1\right)}{1+\left(n-1\right)\eta}\frac{z_i^a\left(\infty \right)}{1+{\lambda}_{ii}^{\infty }-\omega \sum \limits_{k=1,k\ne i}^n{\lambda}_{ik}^{\infty }}& -\frac{\omega }{\beta +1}\frac{1-\omega \left(n-1\right)}{1+\left(n-1\right)\eta}\frac{z_i^a\left(\infty \right)}{1+{\lambda}_{ii}^{\infty }-\omega \sum \limits_{k=1,k\ne i}^n{\lambda}_{ik}^{\infty }}\\ {}\frac{\phi -\beta -1}{\beta +1}\left(1+\left(n-1\right)\eta \right){\phi \varepsilon}_i{L}_i{\left({c}_i^a\left(\infty \right)\right)}^{\phi -2}{z}_i^a{\left(\infty \right)}^{-\beta }& \frac{\beta }{\beta +1}\frac{{\phi \varepsilon}_i{L}_i{\left({c}_i^a\left(\infty \right)\right)}^{\phi -1}{z}_i^a{\left(\infty \right)}^{-\beta }}{1+{\lambda}_{ii}^{\infty }-\omega \sum \limits_{k=1,k\ne i}^n{\lambda}_{ik}^{\infty }}+\rho -\delta & -\frac{\beta \omega}{\beta +1}\frac{{\phi \varepsilon}_i{L}_i{\left({c}_i^a\left(\infty \right)\right)}^{\phi -1}{z}_i^a{\left(\infty \right)}^{-\beta }}{1+{\lambda}_{ii}^{\infty }-\omega \sum \limits_{k=1,k\ne i}^n{\lambda}_{ik}^{\infty }}\\ {}\frac{\phi -\beta -1}{\beta +1}\left(1+\left(n-1\right)\eta \right){\eta \phi \varepsilon}_i{L}_i{\left({c}_i^a\left(\infty \right)\right)}^{\phi -2}{z}_i^a{\left(\infty \right)}^{-\beta }& \eta \frac{\beta }{\beta +1}\frac{{\phi \varepsilon}_i{L}_i{\left({c}_i^a\left(\infty \right)\right)}^{\phi -1}{z}_i^a{\left(\infty \right)}^{-\beta }}{1+{\lambda}_{ii}^{\infty }-\omega \sum \limits_{k=1,k\ne i}^n{\lambda}_{ik}^{\infty }}& -\omega \eta \frac{\beta }{\beta +1}\frac{{\phi \varepsilon}_i{L}_i{\left({c}_i^a\left(\infty \right)\right)}^{\phi -1}{z}_i^a{\left(\infty \right)}^{-\beta }}{1+{\lambda}_{ii}^{\infty }-\omega \sum \limits_{k=1,k\ne i}^n{\lambda}_{ik}^{\infty }}+\rho -\delta \end{array}\right) $$
(37)

The eigenvalues of the Jacobian matrix at an equilibrium point is calculated next. To calculate the eigenvalues, the roots of the characteristic of polynomial det(J − μI) = 0 are found. The resulted three eigenvalues are as follows:

$$ {\displaystyle \begin{array}{l}{\mu}_1=\rho -\delta \\ {}{\mu}_2=\frac{1}{2}\left(-\sqrt{{\left(\rho +\frac{\phi \delta}{\beta +1}\frac{\omega \left(n-\eta -1\right)}{\left(1-\omega \left(n-1\right)\right)}\right)}^2+4\frac{\phi -\beta -1}{\beta +1}\left(\frac{\delta^2\phi }{\beta}\frac{\left(1-\omega \eta \right)}{\left(1-\omega \left(n-1\right)\right)}+\delta \left(\rho -\delta \right)\right)}\right.+\left(\rho +\frac{\phi \delta}{\beta +1}\frac{\omega \left(n-\eta -1\right)}{\left(1-\omega \left(n-1\right)\right)}\right)\\ {}{\mu}_3=\frac{1}{2}\left(+\sqrt{{\left(\rho +\frac{\phi \delta}{\beta +1}\frac{\omega \left(n-\eta -1\right)}{\left(1-\omega \left(n-1\right)\right)}\right)}^2+4\frac{\phi -\beta -1}{\beta +1}\left(\frac{\delta^2\phi }{\beta}\frac{\left(1-\omega \eta \right)}{\left(1-\omega \left(n-1\right)\right)}+\delta \left(\rho -\delta \right)\right)}\right.+\left(\rho +\frac{\phi \delta}{\beta +1}\frac{\omega \left(n-\eta -1\right)}{\left(1-\omega \left(n-1\right)\right)}\right)\end{array}} $$
(38)

As can be observed, the equilibrium is stable in the saddle point sense where \( \frac{\delta^2\phi }{\beta}\frac{\left(1-\omega \eta \right)}{\left(1-\omega \left(n-1\right)\right)}+\delta \left(\rho -\delta \right)<0 \)i.e. \( \rho <{\alpha}_D\delta, {\alpha}_D=\left(1-\frac{\phi }{\beta}\frac{\left(1-\omega \eta \right)}{\left(1-\omega \left(n-1\right)\right)}\right) \).

Appendix 2: Stability Analysis of Equilibrium-Centralized Decision Case

To evaluate the stability of the steady state, we compute the Jacobian matrix of the system of nonlinear Eqs. (1), (13) and (14) as follows:

$$ \left(\begin{array}{cc}-\frac{\phi }{\beta +1}\Big(1-\omega \left(n-1\right)\frac{z_i^a\left(\infty \right)}{c_i^a\left(\infty \right)}+\delta & \frac{1}{\beta +1}\frac{1-\omega \left(n-1\right)}{\left(1+\left(n-1\right)\eta \right)}\frac{z_i^a\left(\infty \right)}{1+\left(1-\omega \left(n-1\right)\right){\lambda}_i^{\infty}\Big)}\\ {}\frac{\phi -\beta -1}{\beta +1}{\left(1+\left(n-1\right)\eta \right)}^2{\phi \varepsilon}_i{L}_i{c}_i^a{\left(\infty \right)}^{\phi -2}{z}_i^a{\left(\infty \right)}^{-\beta }& \left(1+\left(n-1\right)\eta \right)\left(1-\omega \left(n-1\right)\right)\frac{\beta }{\beta +1}\frac{{\phi \varepsilon}_i{L}_i{c}_i^a{\left(\infty \right)}^{\phi -1}{z}_i^a\left(\infty \right)\Big){}^{-\beta }}{1+\left(1-\omega \left(n-1\right)\right){\lambda}_i^{\infty}\Big)}+\rho -\delta \end{array}\right) $$
(39)

The eigenvalues of the Jacobian matrix is calculated at the equilibrium point as follows:

$$ {\displaystyle \begin{array}{l}{\mu}_1=\frac{1}{2}\left(-\sqrt{\rho^2+4\frac{\phi -\beta -1}{\beta +1}\left(\frac{\delta^2\phi }{\beta +1}\left(1+\frac{1}{\beta \Big(1-\omega \left(n-1\right)}\right)+\delta \left(\rho -\delta \right)\right)}+\rho \right)\\ {}{\mu}_2=\frac{1}{2}\left(\sqrt{\rho^2+4\frac{\phi -\beta -1}{\beta +1}\left(\frac{\delta^2\phi }{\beta +1}\left(1+\frac{1}{\beta \Big(1-\omega \left(n-1\right)}\right)+\delta \left(\rho -\delta \right)\right)}+\rho \right)\end{array}} $$
(40)

It is observed that the equilibrium is stable in the saddle point sense where \( 1+\frac{1}{\beta \left(1-\omega \left(n-1\right)\right)}+\delta \left(\rho -\delta \right)<0 \) i.e. \( \rho <{\alpha}_c\delta, {\alpha}_c=1-\frac{\phi }{\beta \left(\beta +1\right)}\frac{\beta \left(1-\omega \left(n-1\right)+1\right)}{1-\omega \left(n-1\right)} \).

Appendix 3: Proof for Proposition 5

By substituting η = 0 in the eqs. (9) and (15) the followings are obtained:

$$ {\displaystyle \begin{array}{c}{\mathrm{z}}_D=\left[\varepsilon L{\delta}^{-\phi}\right({\left(1-\omega \left(n-1\right)\right)}^{\phi}\left(\beta +\frac{\phi \delta}{\left(\rho -\delta \right)\left(1-\omega \left(n-1\right)\right)}\right)\Big]{}^{1/\left(1-\phi +\beta \right)}\\ {}{\mathrm{z}}_C={\left[\varepsilon L{\delta}^{-\phi }{\left(1-\omega \left(n-1\right)\right)}^{\phi}\left(\beta +\frac{\phi \delta}{\left(\rho -\delta \right)}\right)\right]}^{1/\left(1-\phi +\beta \right)}\end{array}} $$
(41)

Since 0 < (1 − ω(n − 1)) < 1, then zD > zc.

By substituting η = 1 in the eqs. (9) and (15), the followings are obtained:

$$ {\displaystyle \begin{array}{c}{\mathrm{z}}_D=\left[\varepsilon L{\delta}^{-\phi }{\left(1+n\right)}^{\phi -\beta -1}\right({\left(1-\omega \left(n-1\right)\right)}^{\phi}\left(\beta +\frac{\phi \delta}{\left(\rho -\delta \right)}\right)\Big]{}^{1/\left(1-\phi +\beta \right)}\\ {}{\mathrm{z}}_C={\left[\varepsilon L{\delta}^{-\phi }{\left(1+n\right)}^{\phi -\beta }{\left(1-\omega \left(n-1\right)\right)}^{\phi}\left(\beta +\frac{\phi \delta}{\left(\rho -\delta \right)}\right)\right]}^{1/\left(1-\phi +\beta \right)}\end{array}} $$
(42)

It is observed in this case that zD < zc.

The parameter η is in fact equal to the point where centralized security investment zCand decentralize security investment zD (Eqs. 9 and 15 respectively) are equal. There is a unique point η that satisfies zD = zc.

By equating (9) and (15), the following is obtained:

$$ \left(1+\left(n-1\right){\eta}^{\ast}\right)\left(\beta +\frac{\phi \delta}{\left(\rho -\delta \right)}\right)=\left(\beta +\frac{\phi \delta \left(1-{\eta}^{\ast}\omega \left(n-1\right)\right)}{\left(\rho -\delta \right)\left(1-\omega \left(n-1\right)\right)}\right) $$
(43)

Solving (43) the unique η is computed as follows:

$$ {z}_D={z}_c\Rightarrow {\eta}^{\ast }=\frac{\phi \delta \omega}{\beta \left(\rho -\delta \right)\left(1-\omega \left(n-1\right)\right)+\delta \phi \left(1-\omega \left(\mathrm{n}-2\right)\right)} $$
(44)

Since, when η = 0 ⇒ zD > zcand when η = 1 ⇒ zD < zc and we know that η ∈ [0, 1], due to the uniqueness of η, we can conclude that η must be within the range of 0 and 1 as a function of ϕ, δ, ω, β, ρ and n.

Also regarding the fact that \( \frac{\partial {z}_D}{\partial \eta }<0 \) and \( \frac{\partial {z}_C}{\partial \eta }<0 \), the following results are obtained:

$$ {\displaystyle \begin{array}{c}0\le \eta <{\eta}^{\ast}\Rightarrow {z}_D<{z}_c\\ {}{\eta}^{\ast }<\eta \le 1\Rightarrow {z}_D>{z}_c\\ {}\eta ={\eta}^{\ast}\Rightarrow {z}_D={z}_c\end{array}} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezhei, M., Tork Ladani, B. Interdependency Analysis in Security Investment against Strategic Attacks. Inf Syst Front 22, 187–201 (2020). https://doi.org/10.1007/s10796-018-9845-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10796-018-9845-8

Keywords

Navigation