Skip to main content
Log in

An information dissemination model of product quality and safety based on scale-free networks

  • Published:
Information Technology and Management Aims and scope Submit manuscript

Abstract

In the small-world model, information nodes’ positions are relatively ordered. However, information dissemination between nodes is unordered on the Internet. In this study, a product quality and safety information dissemination model on the Internet is proposed in terms of the characteristics of the scale-free model in the complex network. Using the simulation tests, we found that the information diffusion rate will speed up and the time needed for the system to reach the equilibrium will shorten when the spontaneous dissemination coefficient increases. Additionally, the scope of information coverage also increases as the system’s size increases. However, the time of information diffusion needed to cover the maximum area does not change with the system’s size. The media’s influence has also been found to have an effect on the information dissemination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Barabási A, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512

    Article  Google Scholar 

  2. Fortunato S (2004) Damage spreading and opinion dynamics on scale-free networks. Phys A 348(12):683–690

    Google Scholar 

  3. Grabowski A, Kosinski RA (2006) Ising-based model of opinion formation in a complex network of interpersonal interactions. Phys A 361(2):651–664

    Article  Google Scholar 

  4. Hui C, Magdon-Ismail M, Wallace W (2008) Micro-simulation of diffusion of warnings. Proceedings of the 5th International Conference on Information Systems for Crisis Response and Management, pp 424–430

  5. Hui C, Magdon-Ismail M, Wallace W, Goldberg M (2009) The impact of changes in network structure on diffusion of warnings. Proceedings of Workshop on Analysis of Dynamic Networks at SIAM International Conference on Data Mining, Sparks, NV, May 2009

  6. Isham V, Harder S, Nekovee M (2010) Stochastic epidemics and rumors on finite random networks. Phys A 389(3):561–576

    Article  Google Scholar 

  7. Jalili M (2013) Social power and opinion formation in complex networks. Phys A 392(4):959–966

    Article  Google Scholar 

  8. Kataev M, Bulysheva L, Emelyanenko A, Emelyanenko V (2013) Enterprise systems in Russia: 1992–2012. Enterp Inf Syst 7(2):169–186

    Article  Google Scholar 

  9. Le C, Gu X, Pan K, Dai F, Qi G (2013) Public and expert collaborative evaluation model and algorithm for enterprise knowledge. Enterp Inf Syst 7(3):375–393

    Article  Google Scholar 

  10. Luo Z, Yang G, Di Z (2012) Opinion formation on the social networks with geographic structure. Acta Phys Sin 61(19):190509

    Google Scholar 

  11. Lykourentzou I, Dagka F, Papadaki K, Lepouras G, Vassilakis C (2012) Wikis in enterprise settings: a survey. Enterp Inf Syst 6(1):1–53

    Article  Google Scholar 

  12. Nekovee M, Moreno Y, Bianconi G, Marsili M (2007) Theory of rumor spreading in complex social networks. Phys A 374:457–470

    Article  Google Scholar 

  13. Pastor-Satorras R, Vespignani A, Moreno Y (2002) Epidemic outbreaks in complex heterogeneous networks. J Eur Phys J B 26(4):521–529

    Google Scholar 

  14. Rodrigues E, Costa L (2005) Surviving opinions in Sznajd models on complex networks. Int J Mod Phys C 16(11):1785–1792

    Article  Google Scholar 

  15. Schulze C (2004) Sznajd opinion dynamics with global and local neighborhood. Int J Mod Phys C 15(6):867–872

    Article  Google Scholar 

  16. Shan S, Mao Z, Zhou R, Liu Z, Wu F (2013) Streaming media advertising: an empirical study. Syst Res Behav Sci 30(3):398–411

    Article  Google Scholar 

  17. Shan S, Xin T, Wang L, Li Y, Li L (2013) Identifying influential factors of knowledge sharing in emergency events: a virtual community perspective. Syst Res Behav Sci 30(3):367–382

    Article  Google Scholar 

  18. Slanina F, Lavicka H (2003) Analytical results for the Sznajd model of opinion formation. Eur Phys J B 35(2):279–288

    Article  Google Scholar 

  19. Wang L, Shi H, Yu S, Li H, Liu L, Bi Z, Fu L (2012) An application of enterprise systems in quality management of products. Inf Technol Manag 13(4):389–402

    Article  Google Scholar 

  20. Wang P, Ding Z, Jiang C, Zhou M (2014) Automated web service composition supporting conditional branch structures. Enterp Inf Syst 8(1):121–146

    Article  Google Scholar 

  21. Wang R, Jin Y, Li F (2012) A review of microblogging evolution based on the complex network theory. Proceedings of 2011 International Conference in Electrics, Communication and Automatic Control, pp 1053–1060

  22. Watts D, Strogatz S (1998) Collective dynamics of “small-world” networks. Nature 393(6684):440–442

    Article  Google Scholar 

  23. Xia Y, Su W, Lau R, Liu Y (2013) Discovering latent commercial networks from online financial news articles. Enterp Inf Syst 7(3):303–331

    Article  Google Scholar 

  24. Xie M, Jia Z, Chen Y (2012) Simulating the spreading of two competing public opinion information on complex network. Appl Math 3(8):1074–1078

    Article  Google Scholar 

  25. Xing Y, Li L, Bi Z, Wilamowska-Korsak M, Zhang L (2013) Operations research (OR) in service industries: a comprehensive review. Syst Res Behav Sci 30(3):300–353

    Article  Google Scholar 

  26. Xu L (2013) Introduction: systems science in industrial sectors. Syst Res Behav Sci 30(3):211–213

    Article  Google Scholar 

  27. Xu S, Xu L, Basl J (2012) Introduction: advances in e-business engineering. Inf Technol Manag 13(4):201–204

    Article  Google Scholar 

  28. Zanette D (2002) Dynamics of rum our propagation on small world networks. Phys Rev E 65(4):1079–1145

    Article  Google Scholar 

  29. Zhang D, Wang H, Li X, He M, Fang P (2010) Public opinion evolution model with the variable topology structure based on scale free network. Acta Phys Sin 59(8):5175–5181

    Google Scholar 

  30. Zhang H, Wang D, Wang L, Bi Z, Chen Y (2014) A semantics-based method for clustering of Chinese web search results. Enterp Inf Syst 8(1):147–165

    Article  Google Scholar 

  31. Zhang Y, Liu Y, Zhang H, Cheng H, Xiong F (2011) The research of information dissemination model on online social network. Acta Phys Sin 60(5):60–66

    Google Scholar 

  32. Zhao J, Wu J, Feng X, Xiong H, Xu K (2012) Information propagation in online social networks: a tie-strength perspective. Knowl Inf Syst 32(3):589–608

    Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge that this research is supported and funded by the National Science Foundation of China under Grant Nos. 71301152, 71271013 and 71301011, the Societal Science Foundation of China under Grant No. 11AZD096, the China Postdoctoral Science Foundation under Grants No. 2012M520008 and No. 2013T60091, the National Science Foundation of Beijing under Grant No. 9142012, the Science and Technology Support Program under Grants Nos. 2013BAK04B02 and 2013BAK04B04, and Quality Inspection Project Grant No. 201410309.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingcheng Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Lei, C., Xu, Y. et al. An information dissemination model of product quality and safety based on scale-free networks. Inf Technol Manag 15, 211–221 (2014). https://doi.org/10.1007/s10799-014-0189-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10799-014-0189-x

Keywords

Navigation