Skip to main content
Log in

The Calculus of Relations as a Foundation for Mathematics

  • Published:
Journal of Automated Reasoning Aims and scope Submit manuscript

Abstract

A variable-free, equational logic \(\mathcal{L}^\times\) based on the calculus of relations (a theory of binary relations developed by De Morgan, Peirce, and Schröder during the period 1864–1895) is shown to provide an adequate framework for the development of all of mathematics. The expressive and deductive powers of \(\mathcal{L}^\times\) are equivalent to those of a system of first-order logic with just three variables. Therefore, three-variable first-order logic also provides an adequate framework for mathematics. Finally, it is shown that a variant of \(\mathcal{L}^\times\) may be viewed as a subsystem of sentential logic. Hence, there are subsystems of sentential logic that are adequate to the task of formalizing mathematics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andréka, H., Németi, I., Sain, I.: Algebraic logic. In: Gabbay, D.M., Guenther, F. (eds.) Handbook of Philosophical Logic, vol. 2, pp. 133–247. Second edition, Kluwer, Dordrecht (2001)

    Google Scholar 

  2. van Benthem, J.: Exploring Logical Dynamics. Studies in Logic, Language, and Information, xi + 329 pp. CSLI Publications, Stanford, CA (1996)

    Google Scholar 

  3. Brink, C., Kahl, W., Schmidt, G. (eds.): Relational Methods in Computer Science. Adv. Comput. Sci. xv + 272 pp. Springer, Berlin Heidelberg New York (1997)

    Google Scholar 

  4. Chang, C.C., Keisler, H.J.: Model Theory. Studies in Logic and the Foundations of Mathematics, vol. 73, xvi + 650 pp. Third edition, North-Holland, Amsterdam (1990)

    Google Scholar 

  5. Church, A.: Introduction to Mathematical Logic, vol. 1, x + 378 pp. Princeton University Press, Princeton (1956)

    Google Scholar 

  6. De Morgan, A.: On the syllogism, no. IV, and on the logic of relations. Trans. Camb. Philo. Soc. 10, 331–358 (1864)

    Google Scholar 

  7. Enderton, H.B.: A Mathematical Introduction to Logic, xiii + 295 pp. Academic, New York (1972)

    MATH  Google Scholar 

  8. Enderton, H.B.: Elements of Set Theory, xiv + 279 pp. Academic, New York (1977)

    MATH  Google Scholar 

  9. Gabbay, D.M., Kurucz, Á., Wolter, F., Zakharyaschev, M.: Many-Dimensional Modal Logics: Theory and Applications. Studies in Logic and the Foundations of Mathematics, vol. 148, xviii + 747 pp. Elsevier, Amsterdam (2003)

    Google Scholar 

  10. Halmos, P.R.: Algebraic Logic, 271 pp. Chelsea, New York (1962)

    MATH  Google Scholar 

  11. Halmos, P.R.: Lectures on Boolean Algebras. Van Nostrand Mathematical Studies, no. 1, ii + 147 pp. D. Van Nostrand Company, Princeton, NJ, (1963) (Reprinted by Springer, Berlin Heidelberg New York (1974))

    Google Scholar 

  12. Henkin, L., Monk, D., Tarski, A.: Cylindric Algebras, Part I. Studies in Logic and the Foundations of Mathematics, vol. 64, vi + 508 pp. North-Holland, Amsterdam (1971)

    Google Scholar 

  13. Henkin, L., Monk, D., Tarski, A.: Cylindric Algebras, Part II. Studies in Logic and the Foundations of Mathematics, vol. 115, ix + 302 pp. North-Holland, Amsterdam (1985)

    Google Scholar 

  14. Hirsch, R., Hodkinson, I., Maddux, R.D.: Relation algebra reducts of cylindric algebras and an application to proof theory. J. Symb. Log. 67, 197–213 (2002)

    MATH  MathSciNet  Google Scholar 

  15. Hirsch, R., Hodkinson, I., Maddux, R.D.: Provability with finitely many variables. Bull. Symb. Log. 8, 348–379 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hirsch, R., Hodkinson, I.: Relation Algebras by Games. Studies in Logic and the Foundations of Mathematics, vol. 147, xvii + 691 pp. Elsevier, Amsterdam (2002)

    Google Scholar 

  17. Hungtington, E.V.: New sets of independent postulates for the algebra of logic, with special reference to Whitehead and Russell’s Principia Mathematica. Trans. Amer. Math. Soc. 35, 274–304 (1933)

    Article  MathSciNet  Google Scholar 

  18. Hungtington, E.V.: Boolean algebra. A correction. Trans. Amer. Math. Soc. 35, 557–558 (1933)

    Article  MathSciNet  Google Scholar 

  19. Löwenheim, L.: Über Möglichkeiten im Relativkalkül. Math. Ann. 76, 447–470 (1915)

    Article  MathSciNet  Google Scholar 

  20. Löwenheim, L.: Einkleidung der Mathematik in Schröderschen Relativkalkul. J. Symb. Log. 5, 1–15 (1940)

    Article  MATH  Google Scholar 

  21. Maddux, R.D.: Topics in relation algebras. Doctoral dissertation, University of California, Berkeley, iii + 241 pp. (1978)

    Google Scholar 

  22. Maddux, R.D.: Nonfinite axiomatizability results for cylindric and relation algebras. J. Symb. Log. 54, 951–974 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  23. Maddux, R.D.: Relation algebras of formulas. In: Orlowska, E. (ed.) Logic at Work. Studies in Fuzziness and Soft Computing, vol. 24, pp. 613–636. Springer, Heidelberg and New York (1999)

    Google Scholar 

  24. McKenzie, R.N.: The representation of relation algebras, Doctoral dissertation, University of Colorado, Boulder, vii + 128 pp. (1966)

    Google Scholar 

  25. McKenzie, R.N.: Representations of integral relation algebras. Mich. Math. J. 17, 279–287 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  26. Monk, J.D.: On representable relation algebras. Mich. Math. J. 11, 207–210 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  27. Monk, J.D.: Nonfinitizability of classes of representable cylindric algebras. J. Symb. Log. 34, 331–343 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  28. Moore, G.H.: A house divided against itself: The emergence of first-order logic as the basis for mathematics. In: Phillips, E. (ed.) Studies in the History of Mathematics. Studies in Mathematics, vol. 26, pp. 98–136. The Mathematical Association of America (1987)

  29. Németi, I.: Free algebras and decidability in algebraic logic (in Hungarian). Habilitation, Hungarian Academy of Sciences, Budapest, xviii + 169 pp. (1986) (An English translation is available from the author.)

  30. Németi, I., Sain, I. (special eds.): Log. J. IGPL 8, 373–591 (2000)

  31. Peirce, C.S.: Note B. The logic of relatives. In: Peirce, C.S. (ed.) Studies in Logic by Members of the Johns Hopkins University, pp. 187–203. Little, Brown, and Company, Boston (1883) (Reprinted by John Benjamins, Amsterdam, 1983.)

    Google Scholar 

  32. Russell, B.: The Principles of Mathematics. Cambridge University Press (1903) (Reprinted by Allen & Unwin, London, 1948.)

  33. Schröder, E.: Vorlesungen über die Algebra der Logik (exakte Logik), vol. III, Algebra und Logik der Relative, part 1, 649 pp. Publisher: B. G. Teubner, Leipzig (1895) (Reprinted by Chelsea, New York, 1966.)

  34. Tarski, A.: On the calculus of relations. J. Symb. Log. 6, 73–89 (1941)

    Article  MATH  MathSciNet  Google Scholar 

  35. Tarski, A.: A simplified formalization of predicate logic with identity. Arch. Math. Log. Grundl. Forsch. 7, 61–79 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  36. Tarski, A., Givant, S.: A Formalization of Set Theory without Variables. Colloquium Publications, vol. 41, xxi + 318 pp. Am. Math. Soc. Providence RI (1987)

  37. Tarski, A., Mostowski, A., Robinson, R.M.: Undecidable Theories. Studies in Logic and the Foundations of Mathematics, xi + 98 pp. North-Holland, Amsterdam (1953)

    Google Scholar 

  38. Vaught, R.L.: On a theorem of Cobham concerning undecidable theories. In: Nagel, E., Suppes, P., Tarski, A. (eds.) Logic, Methodology, and Philosophy of Science: Proceedings of the 1960 International Congress, pp. 14–25. Stanford University Press, Stanford (1962)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Givant.

Additional information

This paper is an expanded version of a talk given by the author at the Special Session on Automated Reasoning in Mathematics and Logic, held March 8–10, 2002, at the Georgia Institute of Technology, during the Joint Southeastern Section MAA/Southeast Regional AMS Meeting. The session was organized by Johan G. F. Belinfante.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Givant, S. The Calculus of Relations as a Foundation for Mathematics. J Autom Reasoning 37, 277–322 (2006). https://doi.org/10.1007/s10817-006-9062-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10817-006-9062-x

Key words

Navigation