Skip to main content
Log in

Linear Quantifier Elimination

  • Published:
Journal of Automated Reasoning Aims and scope Submit manuscript

Abstract

This paper presents verified quantifier elimination procedures for dense linear orders (two of them novel), for real and for integer linear arithmetic. All procedures are defined and verified in the theorem prover Isabelle/HOL, are executable and can be applied to HOL formulae themselves (by reflection). The formalization of the different theories is highly modular.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ballarin, C.: Interpretation of locales in Isabelle: theories and proof contexts. In: Borwein, J., Farmer, W. (eds.) Mathematical Knowledge Management. LNCS, vol. 4108, pp. 31–43. Springer, Heidelberg (2006)

  2. Boyer, R.S., Moore, J.S.: Metafunctions: proving them correct and using them efficiently as new proof procedures. In: Boyer, R., Moore, J. (eds.) The Correctness Problem in Computer Science, pp. 103–184. Academic, New York (1981)

  3. Chaieb, A.: Verifying mixed real-integer quantifier elimination. In: Furbach, U., Shankar, N. (eds.) Automated Reasoning (IJCAR 2006). LNCS, vol. 4130, pp. 528–540. Springer, Heidelberg (2006)

  4. Chaieb, A., Nipkow, T.: Verifying and reflecting quantifier elimination for Presburger arithmetic. In: Stutcliffe, G., Voronkov, A. (eds.) Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2005). LNCS, vol. 3835, pp. 367–380. Springer, Heidelberg (2005)

  5. Cooper, D.C.: Theorem proving in arithmetic without multiplication. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence, vol. 7, pp. 91–100. Edinburgh University Press, Edinburgh (1972)

  6. Enderton, H.: A Mathematical Introduction to Logic. Academic, New York(1972)

    MATH  Google Scholar 

  7. Farkas, J.: Theorie der einfachen Ungleichungen. J. Reine Angew. Math. 124, 1–27 (1902)

    Google Scholar 

  8. Ferrante, J., Rackoff, C.: A decision procedure for the first order theory of real addition with order. SIAM J. Comput. 4, 69–76 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fourier, J.B.J.: Solution d’une question particulière du calcul des inégalités. In: Darboux, G. (ed.) Joseph Fourier—Œuvres Complétes, vol. 2, pp. 317–328. Gauthier-Villars, Paris (1888–1890)

  10. Gonthier, G.: Formal proof—the four-colour theorem. Not. Am. Math. Soc. 55, 1382–1393 (2008)

    MATH  MathSciNet  Google Scholar 

  11. Haftmann, F., Wenzel, M.: Constructive type classes in Isabelle. In: Altenkirch, Th., McBride, C. (eds.) Types for Proofs and Programs (TYPES 2006). LNCS, vol. 4502, pp. 160–174. Springer, Heidelberg (2007)

  12. Harrison, J.: Complex quantifier elimination in HOL. In: Boulton, R., Jackson, P. (eds.) TPHOLs 2001: Supplemental Proceedings, pp. 159–174. Division of Informatics, University of Edinburgh, Edinburgh (2001)

  13. Harrison, J.: Handbook of Practical Logic and Automated Reasoning. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  14. Langford, C.H.: Some theorems on deducibility. Ann. Math. (2nd Series) 28, 16–40 (1927)

    Article  MathSciNet  Google Scholar 

  15. Loos, R., Weispfenning, V.: Applying linear quantifier elimination. Comput. J. 36, 450–462 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  16. Mahboubi, A.: Contributions à la certification des calculs sur ℝ: théorie, preuves, programmation. Ph.D. thesis, Université de Nice (2006)

  17. McLaughlin, S., Harrison, J.: A proof-producing decision procedure for real arithmetic. In: Nieuwenhuis, R. (ed.) Automated Deduction—CADE-20. LNCS, vol. 3632, pp. 295–314. Springer, Heidelberg (2005)

  18. Monniaux, D.: A quantifier elimination algorithm for linear real arithmetic. In: Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2008). LNCS, vol. 5330, pp. 243–257. Springer, Heidelberg (2008)

  19. Motzkin, T.: Beiträge zur Theorie der Linearen Ungleichungen. PhD thesis, Universität Basel (1936)

  20. Nipkow, T.: Linear quantifier elimination. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) Automated Reasoning (IJCAR 2008). LNCS, vol. 5195, pp. 18–33. Springer, Heidelberg (2008)

  21. Nipkow, T.: Reflecting quantifier elimination for linear arithmetic. In: Grumberg, O., Nipkow, T., Pfaller, C. (eds.) Formal Logical Methods for System Security and Correctness, pp. 245–266. IOS, Amsterdam (2008)

  22. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL—A Proof Assistant for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

  23. Norrish, M.: Complete integer decision procedures as derived rules in HOL. In: Basin, D., Wolff, B. (eds.) Theorem Proving in Higher Order Logics, TPHOLs 2003. LNCS, vol. 2758, pp. 71–86. Springer, Heidelberg (2003)

  24. Obua, S.: Proving bounds for real linear programs in Isabelle/HOL. In: Hurd, J. (ed.) Theorem Proving in Higher Order Logics (TPHOLs 2005). LNCS, vol. 3603, pp. 227–244. Springer, Heidelberg (2005)

  25. Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In: Comptes Rendus du I Congrès de Mathématiciens des Pays Slaves, pp. 92–101 (1929)

  26. Weispfenning, V.: The complexity of linear problems in fields. J. Symbol. Comput. 5, 3–27 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Nipkow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nipkow, T. Linear Quantifier Elimination. J Autom Reasoning 45, 189–212 (2010). https://doi.org/10.1007/s10817-010-9183-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10817-010-9183-0

Keywords

Navigation