Skip to main content

Advertisement

Log in

Tomocomd-Cardd, a novel approach for computer-aided ‘ rational’ drug design: I. Theoretical and experimental assessment of a promising method for computational screening and in silico design of new anthelmintic compounds

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

In this work, the TOMOCOMD-CARDD approach has been applied to estimate the anthelmintic activity. Total and local (both atom and atom-type) quadratic indices and linear discriminant analysis were used to obtain a quantitative model that discriminates between anthelmintic and non-anthelmintic drug-like compounds. The obtained model correctly classified 90.37% of compounds in the training set. External validation processes to assess the robustness and predictive power of the obtained model were carried out. The QSAR model correctly classified 88.18% of compounds in this external prediction set. A second model was performed to outline some conclusions about the possible modes of action of anthelmintic drugs. This model permits the correct classification of 94.52% of compounds in the training set, and 80.00% of good global classification in the external prediction set. After that, the developed model was used in virtual in silicoscreening and several compounds from the Merck Index, Negwer‘s handbook and Goodman and Gilman were identified by models as anthelmintic. Finally, the experimental assay of one organic chemical (<b>G-1</b>) by an in vivo test coincides fairly well (100) with model predictions. These results suggest that the proposed method will be a good tool for studying the biological properties of drug candidates during the early state of the drug-development process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • P. Kohler (2001) Int. J. Parasitol. 31 336

    Google Scholar 

  • R.J. Martin A.P. Robertson H. Bjorn (1997) Parasitology 114 S111

    Google Scholar 

  • R.K. Pichard (1994) Vet. Parasitol. 54 259

    Google Scholar 

  • R.J. Martin (1997) Vet. J. 154 11

    Google Scholar 

  • H. González Díaz E. Olazábal N. Castañedo I. Hernández A. Morales H.S. Serrano J. González R. Ramos (2002) J. Mol. Mod. 8 237

    Google Scholar 

  • D. Cioli (1998) Parasitol. Today 14 418

    Google Scholar 

  • M.J. Conceicao C.A. Argento A. Correa (2000) Memorias instituto Oswaldo Cruz 95 375

    Google Scholar 

  • Y.S. Liang G.C. Coles M. Doenhoff (2000) J. Trop. Med. Int. Health 5 72

    Google Scholar 

  • J.A. Reynoldson J.M. Behnke L.J. Pallant M.G. Macnish F. Gilbert S. Giles R.J. Spargo R.C. Thompson (1997) Acta Trop. 68 301

    Google Scholar 

  • N.C. Sangster J. Gill (1999) Parasitol. Today 15 141

    Google Scholar 

  • C.C. Coles (1999) J. Med. Microbiol. 48 323

    Google Scholar 

  • L. Moll C.P. Gaasenbeek P. Vellena F.H. Borgsteede (2000) Vet. Parasitol. 91 153

    Google Scholar 

  • J. Rothwell N. Sangster (1997) Int. J. Parasitol. 27 313

    Google Scholar 

  • A.M. Evans R.J. Martin (1996) Br. J. Pharmacol. 118 1127

    Google Scholar 

  • R.J. Martin (1993) Pharmacol. Therapeut 58 13

    Google Scholar 

  • S.J. Robertson R.J. Martin (1993) Br. J. Pharmacol. 108 170

    Google Scholar 

  • R.J. Martin (1985) Br. J. Pharmacol. 84 445

    Google Scholar 

  • Martin, R.J., Parasitology, 147 (1996).

  • D.F. Cully H. Wilkinson D.K. Vassilitis A. Etter J.P. Arena (1996) Parasitology 113 191

    Google Scholar 

  • C.A. Redman A.P. Robertson P.G. Fallon J. Modha J.R. Kusel M.J. Doenhoff R.J. Martin (1996) Parasitol. Today 12 14

    Google Scholar 

  • M.H. Roos M.S.G. Kwa W.M. Grant (1995) Parasitol. Today 11 148

    Google Scholar 

  • Q.A. McKellar L.D.B. Kinabo (1991) Br. Vet. J. 147 306

    Google Scholar 

  • S.R. Edwards A.J. Campbell M. Sheers R.J. Moore P.E. Montague (1981) Mol. Biochem. Parasitol. 2 339

    Google Scholar 

  • S.R. Edwards A.J. Campbell M. Sheers R.J. Moore P.E. Montague (1981) Mol. Biochem. Parasitol. 2 323

    Google Scholar 

  • M.D. Schulman D.A. Ostlind D. Valentino (1982) Mol. Biochem. Parasitol. 5 133

    Google Scholar 

  • R.M. Maizels D.A. Denham (1992) Parasitology 105 49

    Google Scholar 

  • E. Estrada (2000) Environ. Res. 11 55

    Google Scholar 

  • E. Estrada A. Peña (2000) Bioorg. Med. Chem. 8 2755

    Google Scholar 

  • Marrero-Ponce, Y. and Romero, V., TOMOCOMD software, version 1.0, 2002, Central University of Las Villas. TOMOCOMD (TOpological MOlecular COMputer Design) for Windows, version 1.0 is a preliminary experimental version; in the future a professional version can be obtained upon request from Y. Marrero: yovanimp @qf.uclv.edu.cu or ymarrero77@yahoo.es.

  • Y. Marrero-Ponce (2003) Molecules 8 687

    Google Scholar 

  • Y. Marrero-Ponce M.A. Cabrera V. Romero E. Ofori L.A. Montero (2003) ArticleTitleInt J. Mol. Sci. 4 512

    Google Scholar 

  • Y. Marrero-Ponce M.A. Cabrera V. Romero D.H. González F. Torrens (2004) J. Pharm. Pharm. Sci. 7 186

    Google Scholar 

  • Marrero-Ponce, Y., Nodarse, D., González-Díaz, H., Ramos, R., Romero-Zaldivar, V., Torrens, F. and Castro, E. Nucleic Acid Quadratic Indices of the “Macromolecular Graph’s Nucleotides Adjacency Matrix”. Modeling of Footprints after the Interaction of Paromomycin with the HIV-1 ψ-RNA Packaging Region. CPS: physchem/0401004.

  • L.H. Hall L.B. Kier (1995) J. Chem. Inf. Comput. Sci. 35 1039

    Google Scholar 

  • Cotton, F.A., Adv. Inorg. Chem. Revolucionaria Havana, 1966.

  • M. Negwer (1987) Organic-chemical Drugs and their synonyms Akademie-Verlag Berlin

    Google Scholar 

  • The Merck Index, Twelfth Edition. Chapman & Hall, New York, 1996.

  • STATISTICA ver. 5.5, Statsoft, Inc., 1999.

  • H. González-Díaz Y. Marrero-Ponce I. Hernández I. Bastida E. Tenorio O. Nasco E. Uriarte N. Castañedo M.A. Cabrera E. Aguila O. Marrero A. Morales M. Pérez (2003) Chem. Res. Toxicol. 16 1318

    Google Scholar 

  • E. Estrada A. Peña R. Garcia-Domenech (1998) J. Comput.-Aided Mol. Des. 12 583

    Google Scholar 

  • J.V. Julian-Ortiz J. Gálvez C. Muños-Collado R. García-Domenech C. Gimeno-Cardona (1999) J.␣Med. Chem. 42 3308

    Google Scholar 

  • F.J. Milligen J.B. Cornelissen C.P. Guasenbeek B.A. Bokhout (1998) J. Immunol. Met. 213 183

    Google Scholar 

  • J. Mitterpak M. Mendéz M. Mauri (1972) Serie biológica 30 1

    Google Scholar 

  • E. Olazábal A. Morales H. Serrano E. Brito (1999) Vet. Méx. 30 109

    Google Scholar 

  • C. Ping A. Hayes (1994) Acute toxicity and eyes irritancy: Principles and Methods of Toxicology EditionNumber3 Raven Press Ltd New York

    Google Scholar 

  • J. Corba S. Velebny R. Spaldonova (1981) Helminthology 18 43

    Google Scholar 

  • J.S. Steward (1955) Parasitology 45 231

    Google Scholar 

  • I.B. Wood N.K. Amaral K. Bairden J. Duncan T. Kassai J.B. Malone J.A. Pankavich R.K. Reinecke O. Slocombe S.M. Taylor J. Vercruysse (1995) Vet. Parasitol. 58 181

    Google Scholar 

  • N. Tsocheva L. Krustev O. Polyakova (1992) Helminthology 27 261

    Google Scholar 

  • I. Poitou E. Baeza C. Boulard (1992) Vet Parasitol. 45 59

    Google Scholar 

  • Espaine, L., Lines, R. and Demedio, J., Manual de Parasitología y enfermedades Parasitarias I. Editorial MES, Habana (1996) 103.

  • A. Golbraikh A. Tropsha (2002) J. Mol. Graphic Model. 20 269

    Google Scholar 

  • C. Watson (2003) Biosilico 3 83

    Google Scholar 

  • Lajiness, M.S., In Rouvray, D.H. (Ed.), Computational Chemical Graph Theory, Nova Science, New York, 1990, pp. 299.

  • W.P. Walters M.T. Stahl M.A. Murcko (1998) Drug Discov. Today 3 160

    Google Scholar 

  • Conder, G., Kuo, M., Marshall, V. and Zielinski, R., United States Patent 5,643,940 (1997).

  • Flynn, A., United States Patent 4,303,666 (1981).

  • Meek, W., United States Patent 3,949,075 (1976).

  • Scherkenbeck, J., European Patent 0 664 297, A1 (1988).

  • Serban, A., Watson, K., Wilshire, C. and Forsyth, B., United States Patent 4,460,588 (1984).

  • N. Walchshofer I. Delabre-Defayolle J. Paris A.F. Petavy (1990) J. Pharm. Sci. 7 79

    Google Scholar 

  • R.A. Ames (1991) J. Pharm. Sci. 3 293

    Google Scholar 

  • J.R. Ames N. Castognoli M.D. Ryan P. Kavacic (1986) Free Rad. Res. Commun. 2 107

    Google Scholar 

  • N.F.H. Ho S.M. Sims T.J. Vidmar J.S. Day C.L. Barsuhn E.M. Thomas T.G. Geary D. Thompson (1994) J. Pharm. Sci. 83 1052

    Google Scholar 

  • Goodman, A.G., Goodman, L.S. and Gilman, A., Las bases Farmacológicas de la Terapeutica, 9na Ed. Vol II, McGraw-Hill, New York, 1996.

  • B. Alberts D. Bray J. Lewis M. Raff K. Roberts J.D. Watson (1994) Molecular Biology of the Cell EditionNumber3 Garland Publishing, Inc. New York and London

    Google Scholar 

  • J.M. Blondeau N. Castañedo O. Gonzalez R. Medina E. Silveira (1999) Antimicrob. Agents Chemother. 11 1663

    Google Scholar 

  • M.A. Cabrera H. González E. Jiménez D.O. Pérez E. Gómez N. Castañedo (2001) Eur. Bull. Drug Res. 9 1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yovani Marrero-Ponce.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marrero-Ponce, Y., Castillo-Garit, J.A., Olazabal, E. et al. Tomocomd-Cardd, a novel approach for computer-aided ‘ rational’ drug design: I. Theoretical and experimental assessment of a promising method for computational screening and in silico design of new anthelmintic compounds. J Comput Aided Mol Des 18, 615–634 (2004). https://doi.org/10.1007/s10822-004-5171-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-004-5171-y

Keywords

Navigation