Skip to main content
Log in

Subunit rotation models activation of serotonin 5-HT3AB receptors by agonists

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

The N-terminal extracellular regions of heterooligomeric 3AB-type human 5-hydroxytryptamine receptors (5-HT 3ABR) were modelled based on the crystal structure of snail acetylcholine binding protein AChBP. Stepwise rotation of subunit A by 5° was performed between -10° and 15° to mimic agonist binding and receptor activation. Anticlockwise rotation reduced the size of the binding cavity in interface AB and reorganised the network of hydrogen bonds along the interface. AB subunit dimers with different rotations were applied for docking of ligands with different efficacies: 5-HT, m-chlorophenylbiguanide, SR 57227, quinolinyl piperazine and lerisetron derivatives. All ligands were docked into the dimer with −10° rotation representing ligand-free, open binding cavities similarly, without pharmacological discrimination. Their ammonium ions were in hydrogen bonding distance to the backbone carbonyl of W183. Anticlockwise rotation and contraction of the binding cavity led to distinctive docking interactions of agonists with E129 and cation–π interactions of their ammonium ions. Side chains of several further amino acids participating in docking (Y143, Y153, Y234 and E236) are in agreement with the effects of point mutations in the binding loops. Our model postulates that 5-HT binds to W183 in a hydrophobic cleft as well as to E236 in a hydrophilic vestibule. Then it elicits anticlockwise rotation to draw in loop C via π–cation–π interactions of␣its ammonium ion with W183 and Y234. Finally, closure of the binding cavity might end in rebinding of 5-HT to E129 in the hydrophilic vestibule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AChBP:

acetylcholine binding protein

AMBER:

assisted model building with energy refinement

AQPA:

arylquinolinyl piperazine

BQPA:

bicyclooctano-quinolinyl piperazine

CPBG:

m-chlorophenylbiguanide

GABAA:

γ-aminobutyric acidA

5-HT:

5-hydroxytryptamine (serotonin)

LGA:

Lamarckian genetic algorithm

PDB:

protein data bank

RMSD:

relative mean standard deviation

SR 57227:

4-amino-(6-chloro-2-pyridyl)-1-piperidine HCl

TM:

transmembrane.

References

  • R. Jin T.G. Banke M.L. Mayer S.F. Traynelis E. Gouaux (2003) Nat. Neurosci. 6 803

    Google Scholar 

  • N. Unwin (1995) Nature 373 37

    Google Scholar 

  • N. Unwin (2003) FEBS Lett. 555 91

    Google Scholar 

  • M.O. Ortells G.G. Lunt (1995) Trends Neurosci. 18 121

    Google Scholar 

  • A.J. Greenshaw P.H. Silverstone (1997) Drugs 53 20

    Google Scholar 

  • F.G. Boess R. Beroukhim I.L. Martin (1995) J. Neurochem. 64 1401

    Google Scholar 

  • M. Morales S.D. Wang (2002) J. Neurosci. 22 6732

    Google Scholar 

  • A.M. Karnovsky L.F. Gotow D.D. McKinley J.L. Piechan C.L. Ruble C.J. Mills K.A.B. Schellin J.L. Slightom L.R. Fitzgerald C.W. Benjamin S.L. Roberts (2003) Gene 319 137

    Google Scholar 

  • B. Niesler B. Frank J. Kapeller G.A. Rappold (2003) Gene 310 101

    Google Scholar 

  • K. Brejc W. Van Dijk R.V. Klaassen M. Schuurmans J. VanDer Oost A.B. Smit T. Sixma (2001) Nature 411 269 Occurrence Handle10.1038/35077011 Occurrence Handle1:CAS:528:DC%2BD3MXjvF2qsbc%3D Occurrence Handle11357122

    Article  CAS  PubMed  Google Scholar 

  • R.B. Russell M.A. Saqi R.A. Sayle P.A. Bates M.J.E. Sternberg (1997) J. Mol. Biol. 269 423

    Google Scholar 

  • P.H.N. Celie S.E. Van Rossum-Fikkert W.J. Van Dijk K. Brejc A.B. Smit T.K. Sixma (2004) Neuron 41 907

    Google Scholar 

  • T. Grutter J.P. Changeux (2001) Trends Biochem. Sci. 26 459

    Google Scholar 

  • B.A. Cromer C.J. Morton M.W. Parker (2002) Trends Biochem. Sci. 27 280

    Google Scholar 

  • B. Laube G. Maksay R. Schemm H. Betz (2002) Trends Pharmacol. Sci. 23 519

    Google Scholar 

  • V. Costa A. Nistri A. Cavalli P. Carloni (2003) Br. J. Pharmacol. 140 921

    Google Scholar 

  • D.S. Reeves M.F.R. Sayed P.L. Chau K.L. Price S.C.R. Lummis (2003) Biophys. J. 84 2338

    Google Scholar 

  • G. Maksay Zs. Bikádi M. Simonyi (2003) J. Receptors Signal Transduct. 23 255

    Google Scholar 

  • D.C. Reeves S.C.R. Lummis (2002) Mol. Membrane Biol. 19 11

    Google Scholar 

  • P. Venkataraman S.P. Venkatachalan P.R. Joshi M. Muthalagi M.K. Schulte (2002) BMC Biochem. 3 15

    Google Scholar 

  • D.L. Beene K.L. Price H.A. Lester D.A. Dougherty S.C.R. Lummis (2004) J. Neurosci. 24 9097

    Google Scholar 

  • C. Schreiter R. Hovius M. Costioli H. Pick S. Kellenberger L. Schild H. Vogel (2003) J. Biol. Chem. 278 22709

    Google Scholar 

  • X.Q. Hu L. Zhang R.R. Stewart F.F. Weight (2003) J. Biol. Chem. 278 46583

    Google Scholar 

  • F.G. Boess L.J. Steward J.A. Steele D. Liu J. Reid T.A. Glencorse I.L. Martin (1997) Neuropharmacology 36 637

    Google Scholar 

  • L.J. Steward F.G. Boess J.A. Steele D. Liu N. Wong I.L. Martin (2000) Mol. Pharmacol. 57 1249

    Google Scholar 

  • P.A. Davies M. Pistis M.C. Hanna J.A. Peters J.L. Lambert T.G. Hales E.F. Kirkness (1999) Nature 397 359

    Google Scholar 

  • C.H. Wu H. Huang L. Arminski J.C. Alvear Y. Chen Z.Z. Hu R.S. Ledley C. Lewis H.W. Mewes B.C. Orcutt B.E. Suzek A. Tsugita C.R. Vinayaga L.S.L. Yeh J. Zhang W.C. Barker (2002) Nucleic Acids Res. 30 35

    Google Scholar 

  • J.D. Thompson D.G. Higgins T.J. Ibson (1994) Nucleic Acids Res. 22 4673 Occurrence Handle1:CAS:528:DyaK2MXitlSgu74%3D Occurrence Handle7984417

    CAS  PubMed  Google Scholar 

  • Z. Xiang B. Honig (2001) J. Mol. Biol. 311 421

    Google Scholar 

  • Z. Xiang C. Soto B. Honig (2002) Proc. Natl. Acad. Sci. USA 99 7432

    Google Scholar 

  • R.A. Laskowski M.W. MacArthur D.S. Moss J.M. Thornton (1993) J. Appl. Crystallogr. 26 283

    Google Scholar 

  • I.K. McDonald J.M. Thornton (1994) J. Mol. Biol. 238 777

    Google Scholar 

  • G.J. Kleywegt T.A. Jones (1994) Acta Crystallogr. D 50 178

    Google Scholar 

  • M.L. Connolly (1983) Science 221 709

    Google Scholar 

  • F. Melo E. Feytmans (1998) J. Mol. Biol. 277 1141

    Google Scholar 

  • G.M. Morris D.S. Goodsell R.S. Hallaway R. Huey W.E. Hart R.K. Belew A.J. Olson (1998) J. Comput. Chem. 19 1639

    Google Scholar 

  • W.D. Cornell P. Cieplak C.I. Bayly I.R. Gould K.M. Merz SuffixJr. D.M. Ferguson D.C. Spellmeyer T. Fox J.W. Caldwell P.A. Kollman (1995) J. Am. Chem. Soc. 117 5179

    Google Scholar 

  • A. Bachy P.E. Keane H. Gozlan M. Hamon P. Delagne J. Lassalle P. Soubrié (1993) Br. J. Pharmacol. 108 256P

    Google Scholar 

  • G.J. Kilpatrick A. Butler J. Burridge A.W. Oxford (1990) Eur. J. Pharmacol. 182 193

    Google Scholar 

  • M.I. Sepúlveda S.C.R. Lummis I.L. Martin (1991) Br. J. Pharmacol. 104 536

    Google Scholar 

  • H.S. Parihar A. Suryanarayanan C. Ma P. Joshi P. Venkataraman M.K. Schulte K.S. Kirschbaum (2001) Bioorg. Med. Chem. Lett. 11 2133

    Google Scholar 

  • A. Cappelli M. Anzini S. Vomero L. Canullo L. Mennuni F. Makovec E. Doucet M. Hamon C. Menziani P.D. Benedetti G. Bruni M.R. Romero G. Giorgi A. Donati (1999) J. Med. Chem. 42 1556

    Google Scholar 

  • P. Venkataraman P. Joshi S.P. Venkatachalan M. Muthalagi H.S. Parihar K.S. Kirschbaum M.K. Schulte (2002) BMC Biochem. 3 16

    Google Scholar 

  • R.H. Henchman H.L. Wang S.M. Sine P. Taylor J.A. McCammon (2003) Biophys. J. 85 3007

    Google Scholar 

  • Dubin, A.E., Erlander, M.G., Huvar, A., Huvar, R. and Buehler, L.K., US Patent No. 6,365,370, 1999.

  • D. Yan M.K. Schulte K.E. Bloom M.M. White (1999) J. Biol. Chem. 274 5537

    Google Scholar 

  • A.D. Spier S.C.R. Lummis (2000) J. Biol. Chem. 275 5620

    Google Scholar 

  • D.L. Beene G.S. Brandt W. Zhong N.M. Zacharias H.A. Lester D.A. Dougherty (2002) Biochemistry 41 10262

    Google Scholar 

  • A.P. Tairi R. Hovius H. Pick H. Blasey A. Bernard A. Surprenant K. Lundström H. Vogel (1998) Biochemistry 37 15850

    Google Scholar 

  • S. Lankiewicz N. Lobitz C.H.R. Wetzel R. Rupprecht G. Gisselmann H. Hatt (1998) Mol. Pharmacol. 53 202

    Google Scholar 

  • S.B. Hansen Z. Radic T.T. Talley B.E. Molles T. Deerinck I. Tsigelny P. Taylor (2002) J. Biol. Chem. 277 41299

    Google Scholar 

  • K.L. Price S.C.R. Lummis (2004) J. Biol. Chem. 279 23294

    Google Scholar 

  • C. Bouzat F. Gumilar G. Spitzmaul H.L. Wang D. Rayes S.B. Hansen P. Taylor S.M. Sine (2004) Nature 430 896 Occurrence Handle10.1038/nature02753 Occurrence Handle1:CAS:528:DC%2BD2cXmslCnuro%3D Occurrence Handle15318223

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zsolt Bikádi.

Additional information

Authors with equal contribution to the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maksay, G., Simonyi, M. & Bikádi, Z. Subunit rotation models activation of serotonin 5-HT3AB receptors by agonists. J Comput Aided Mol Des 18, 651–664 (2004). https://doi.org/10.1007/s10822-004-6259-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-004-6259-0

Keywords

Navigation