Skip to main content
Log in

A computational tool to optimize ligand selectivity between two similar biomacromolecular targets

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

Algorithms for a new computer program designed to increase ligand--receptor selectivity between two proteins are described. In this program ligand--receptor selectivity is increased by functional modifications to the ligand so as to increase the calculated binding affinity of it to one protein and/or decrease the calculated binding affinity of it to the other protein. The structure of the ligand is modified by selective replacement of atoms and/or functional groups in silico based on a specific set of steric and/or hydropathic complementarity rules involving atoms and functional groups. Relative binding scores are calculated with simple grid-based steric penalty, hydrogen bond complementarity, and with the HINT score model. Two examples are shown. First, modifying the structure of the ligand CB3717 is illustrated in a number of ways such that the binding selectivity to wild type L. casei thymidylate synthase or its E60Q mutant may be improved. Second, starting with a non-selective lead compound that had been co-crystallized with both plant and mammalian 4-hydroxyphenylpyruvate dioxygenases, new compounds (similar to selective ligands discovered by screening) to improve the selectivity of (herbicidal) inhibitors for the plant enzyme were designed by the program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. (a) Li, A.P., Curr. Top. Med. Chem., 4 (2004) 701; (b) Lin, J., Sahakian, D.C., de Morais, S.M., Xu, J.J., Polzer, R.J. and Winter, S.M., Curr. Top. Med. Chem., 3 (2003) 1125

  2. R.J. Riley J.G. Kenna (2004) Curr. Opin. Drug. Discov. Devel. 7 86 Occurrence Handle1:CAS:528:DC%2BD2cXpvFOnur8%3D Occurrence Handle14982152

    CAS  PubMed  Google Scholar 

  3. (a) Cheng, A. and Merz, K.M., Jr., J. Med. Chem., 46 (2003) 3572; (b) Gombar, V.K., Silver, I.S. and Zhao, Z., Curr. Top. Med. Chem., 3 (2003) 1205; (c) Vermeulen, N.P., Curr. Top. Med. Chem., 3 (2003) 1227; (d) Krejsa, C.M., Horvath, D., Rogalski, S.L., Penzotti, J.E., Mao, B., Barbosa, F. and Migeon, J.C., Curr. Opin. Drug Discov. Devel., 6 (2003) 470; (e) Stouch, T.R., Kenyon, J.R., Johnson, S.R., Chen, X.Q., Doweyko, A. and Li, Y., J. Comput. Aided Mol. Des., 17 (2003) 83

  4. (a) Cashman, D.J. and Kellogg, G.E., J. Med. Chem., 47 (2004) 1360; (b) Cashman, D.J., Scarsdale, J.N. and Kellogg, G.E., Nucleic Acids Res., 31 (2003) 4410

  5. (a) He, X., Reeve, A.M., Desai, U., Kellogg, G.E. and Reynolds, K.A., Antimicrob. Agents Chemother., 48 (2004) 3093; (b) He, X. and Reynolds, K.A., Antimicrob. Agents Chemother. 46 (2002) 1310; (c) Scarsdale, J.N., Kazanina, G., He, X., Reynolds, KA. and Wright, H.T., J. Biol. Chem., 276 (2001) 20516

  6. (a) Kellogg, G.E. and Abraham, D.J., Eur. J. Med. Chem., 35 (2000) 651; (b) Burnett, J.C., Kellogg, G.E. and Abraham, D.J., Biochemistry, 39 (2000) 1622; (c) Cozzini, P., Fornabaio, M., Marabotti, A., Abraham, D.J., Kellogg, G. E. and Mozzarelli A., J. Med. Chem., 45 (2002) 2469; (d) Fornabaio, M., Cozzini, P., Mozzarelli, A., Abraham, D.J. and Kellogg, G. E., J. Med. Chem., 46 (2003) 4487; (e) Fornabaio, M., Spyrakis, F, Mozzarelli, A., Cozzini, P., Abraham, D.J. and Kellogg, G. E., J. Med. Chem., 47 (2004) 4507

  7. (a) Kellogg, G.E., Fornabaio, M., Chen, D.L. and Abraham, D.J., J. Chem. Info. Comput. Sci. (submitted). (b) Kellogg, G.E; eduSoft LC Programmers’ Toolkit Manual. http://www.edusoft-lc.com/toolkits/manuals

  8. F.M. Richards (1977) Ann. Rev. Biophs. Bioeng. 6 151 Occurrence Handle10.1146/annurev.bb.06.060177.001055 Occurrence Handle1:CAS:528:DyaE2sXks1CisrY%3D

    Article  CAS  Google Scholar 

  9. G.E. Kellogg D.L. Chen (2004) Chem. & Biodivers. 1 98

    Google Scholar 

  10. (a) Fersht, A.R., Shi, J.P., Knill-Jones, J., Lowe, D.M., Wilkinson, A.J., Blow, D.M., Brick, P., Carter, P, Waye, M M.Y. and Wiinter, G., Nature, 314 (1985) 235; (b) Jencks, W.P., Catalysis in Chemistry and Enzymology, McGraw-Hill, New York, 1969

  11. (a) Lipinski, C.A., Lombardo, F., Dominy, B.W. and Feeney, P.J., Adv. Drug Deliv. Rev., 46 (2001) 3; (b) Oprea, T. I., J. Comput. Aided Mol. Des., 14 (2000) 251--264

  12. (a) van Laar, J.A., Rustum, Y.M., Ackland, S.P., van Groeningen, C.J. and Peters, G.J., Eur. J. Cancer, 34 (1998) 296--306; (b) Finer-Moore, J., Fauman, E.B., Foster, P.G., Perry, K.M., Santi, D.V. and Stroud, R.M., J. Mol. Biol., 232 (1993) 1101--1116; (c) Birdsall, D.L., Finer-Moore, J. and Stroud, R.M., J. Mol. Biol., 255 (1996) 522--535

  13. C. Yang J.W. Pflugrath D.L. Camper M.L. Foster D.J. Pernich T.A. Walsh (2004) Biochemistry 43 10414–10423 Occurrence Handle10.1021/bi049323o Occurrence Handle1:CAS:528:DC%2BD2cXlslKls7c%3D Occurrence Handle15301540

    Article  CAS  PubMed  Google Scholar 

  14. H.J. Bohm (1995) Persp. Drug. Discov. Design 3 21–33

    Google Scholar 

  15. Tripos, Inc., St. Louis, MO, USA

  16. (a) Lauri, G. and Bartlett, P.A., J. Comput.-Aided Mol. Design, 8 (1994) 51--66; (b) Bartlett, P.A., In Chatgilialoglu, C. and Snieckus, V. (Eds.), Organic Synthesis, From Gnosis to Prognosis (NATO Advanced Study Institute), Kluwer, Dordrecht, 1986, pp. 137--173

Download references

Acknowledgements

We gratefully acknowledge partial support of this research by Virginia Commonwealth University and NIH NIAID grant 5R01AI052330 to Dr. Kevin A. Reynolds. We also thank Drs. Reynolds, Derek Cashman and Micaela Fornabaio for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glen E. Kellogg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, D., Kellogg, G. A computational tool to optimize ligand selectivity between two similar biomacromolecular targets. J Comput Aided Mol Des 19, 69–82 (2005). https://doi.org/10.1007/s10822-005-1485-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-005-1485-7

Key words

Navigation