Skip to main content
Log in

In-silico Screening using Flexible Ligand Binding Pockets: A Molecular Dynamics-based Approach

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

In-silico screening of flexible ligands against flexible ligand binding pockets (LBP) is an emerging approach in structure-based drug discovery. Here, we describe a molecular dynamics (MD) based docking approach to investigate the influence on the high-throughput in-silico screening of small molecules against flexible ligand binding pockets. In our approach, an ensemble of 51 energetically favorable structures of the LBP of human estrogen receptor α (hERα) were collected from 3 ns MD simulations. In-silico screening of 3500 endocrine disrupting compounds against these flexible ligand binding pockets resulted in thousands of ER–ligand complexes of which 582 compounds were unique. Detailed analysis of MD generated structures showed that only 17 of the LBP residues significantly contribute to the overall binding pocket flexibility. Using the flexible LBP conformations generated, we have identified 32 compounds that bind better to the flexible ligand-binding pockets compared to the crystal structure. These compounds, though chemically divergent, are structurally similar to the natural hormone. Our MD-based approach in conjunction with grid–based distributed computing could be applied routinely for in-silico screening of large databases against any given target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MDGS:

molecular dynamics generated structures

ER:

estrogen receptor

EDC:

endocrine disrupting chemicals

LBP:

ligand binding pocket

References

  1. E. Fischer (1894) Ber.DtschChem. Ges. 27 2985

    Google Scholar 

  2. G.E. Koshland (1958) Proc Natl. Acad. Sci (USA) 44 98

    Google Scholar 

  3. E.C. Meng B.K. Shoichet I.D. Kuntz (1992) J. Comp. Chem. 13 505 Occurrence Handle10.1002/jcc.540130412

    Article  Google Scholar 

  4. ID. Kuntz J.M. Blaney S.J. Oatley R. Langridge T.E. Ferrin (1982) J. Mol. Biol. 161 269 Occurrence Handle10.1016/0022-2836(82)90153-X Occurrence Handle7154081

    Article  PubMed  Google Scholar 

  5. N. Pattabiraman M. Levitt T.E. Ferrin R. Langridge (1985) J. Comp. Chem. 6 432 Occurrence Handle10.1002/jcc.540060510

    Article  Google Scholar 

  6. D.S. Goodsell R.S. Halliday R. Huey W.E. Hart R.K. Belew A.J. Olson (1998) J. Comp. Chem. 19 1639 Occurrence Handle10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B

    Article  Google Scholar 

  7. T.J.A. Ewing I.D. Kuntz (1997) J. Comp. Chem. 18 1175 Occurrence Handle10.1002/(SICI)1096-987X(19970715)18:9<1175::AID-JCC6>3.0.CO;2-O

    Article  Google Scholar 

  8. B. Kramer G. Metz M. Rarey T. Lengauer (1999) Med. Chem. Res. 8 463

    Google Scholar 

  9. M.A. Ronald M.W. Knegtel (1999) proteins Struct. Funct. Genet. 37 334 Occurrence Handle10.1002/(SICI)1097-0134(19991115)37:3<334::AID-PROT3>3.0.CO;2-9 Occurrence Handle10591095

    Article  PubMed  Google Scholar 

  10. G. Jones (1997) J. Mol. Biol. 267 727 Occurrence Handle10.1006/jmbi.1996.0897 Occurrence Handle9126849

    Article  PubMed  Google Scholar 

  11. F. Jiang S.H. Kim (1991) J. Mol. Biol. 219 79 Occurrence Handle10.1016/0022-2836(91)90859-5 Occurrence Handle2023263

    Article  PubMed  Google Scholar 

  12. B. Sandak R. Nussinov H. Wolfson (1995) J Comput. Appl. Biosci. 1: 87

    Google Scholar 

  13. I.A.P.d.f.l.-r.s. Vakser (1995) Protein Eng. 8 371 Occurrence Handle7567922

    PubMed  Google Scholar 

  14. P.H. Walls M.J. Sternberg (1992) J. Mol. Biol. 228 277 Occurrence Handle10.1016/0022-2836(92)90506-F Occurrence Handle1280302

    Article  PubMed  Google Scholar 

  15. D.A. Gschwend A.C. Good I.D. Kuntz (1996) J. Mol. Recog. 9 175 Occurrence Handle10.1002/(SICI)1099-1352(199603)9:2<175::AID-JMR260>3.0.CO;2-D

    Article  Google Scholar 

  16. Case, D.A., Pearlman, D.A., Caldwell, J.W., Cheatham III, T.E., Wang, J., Ross, W.S., Simmerling, C.L., Darden, T.A., Merz, K.M., Stanton, R.V., Cheng, A.L., Vincent, J.J., Crowley, M., Tsui, V., Gohlke, H., Radmer, R.J., Duan, Y., Pitera, J., Massova, I., Seibel, G.L., Singh, U.C., Weiner, P.K. and Kollman, P.A., AMBER 7, University of California, San Francisco, 2002

  17. B.R. Brooks R.E. Bruccoleri B.D. Olafson D.J. States S. Swaminathan M. Karplus (1983) J. Comp. Chem. 4 187 Occurrence Handle10.1002/jcc.540040211

    Article  Google Scholar 

  18. van Gunsteren, W.F. and Berendsen, H.J.C., Angew.Chem. Int. Ed. (Engl.), 29 (1990), 992

  19. C. Oostenbrink W.F. van Gunsteren (2004) Proteins Struct. Funct. Genet. 54 237 Occurrence Handle10.1002/prot.10558 Occurrence Handle14696186

    Article  PubMed  Google Scholar 

  20. W. Junmei M. Paul W. Wei P.A. Kollman (2001) J. Am. Chem. Soc. 123 5221 Occurrence Handle10.1021/ja003834q Occurrence Handle11457384

    Article  PubMed  Google Scholar 

  21. M.J. Meegan D.G.W. Lloyd (2003) ArticleTitleAdvances in the science of estrogen receptor Curr. Med. Chem. 10 181 Occurrence Handle12570707

    PubMed  Google Scholar 

  22. D. Sivanesan R.V. Rajnarayanan J. Doherty N. Pattabiraman (2004) Pro. Am. Assoc. Can. Res. 44 LB-185

    Google Scholar 

  23. R.M. Blair H. Fang W.S. Branham B.S. Hass S.L. Dial C.L. Moland W. Tong L. Shi R. Perkins D.M. Sheehan (2000) Toxicol. Sci. 54 138 Occurrence Handle10.1093/toxsci/54.1.138 Occurrence Handle10746941

    Article  PubMed  Google Scholar 

  24. M.M. van Lipzig A.M. Ter Laak A. Jongejan N.P. Vermeulen M. Wamelink D. Geerke J.H. Meerman (2004) J. Med. Chem. 47 1018 Occurrence Handle10.1021/jm0309607 Occurrence Handle14761204

    Article  PubMed  Google Scholar 

  25. C. Oostenbrink J.W. Pitera M.H. Marola M.M. van Lipzig H. John N. Meerman W.F. van Gunsteren (2000) J.␣Med. Chem. 43 4594 Occurrence Handle10.1021/jm001045d Occurrence Handle11101351

    Article  PubMed  Google Scholar 

  26. K. Nam P. Marshall R.M. Wolf W. Cornell (2003) Biopolymers 68 130 Occurrence Handle10.1002/bip.10307 Occurrence Handle12579585

    Article  PubMed  Google Scholar 

  27. A. Laila Abou-Zeid M.E. Abdalla (2002) J. Mol. Struct. (Theochem.). 593 39 Occurrence Handle10.1016/S0166-1280(02)00070-2

    Article  Google Scholar 

  28. S. Yoon W.J. Welsh (2004) J. Chem. Inf. Comput. Sci. 44 88 Occurrence Handle10.1021/ci0341619 Occurrence Handle14741014

    Article  PubMed  Google Scholar 

  29. H. M. Berman J. Westbrook Z. Feng G. Gilliland T. N. Bhat H. Weissig I.N. Shindyalov P.E. Bourne (2000) Nucleic Acids Res. 28 235 Occurrence Handle10.1093/nar/28.1.235 Occurrence Handle10592235

    Article  PubMed  Google Scholar 

  30. A.K. Shiau D. Barstad J.T. Radek M.J. Meyers K.W. Nettles B.S. Katzenellenbogen J.A. Katzenellenbogen D.A. Agard G.L. Greene (2002) Nat. Struct. Biol. 9 359 Occurrence Handle11953755

    PubMed  Google Scholar 

  31. A.K. Shiau D. Barstad P.M. Loria L. Cheng P.J. Kushner D.A. Agard G.L. Greene (1998) Cell 95 927 Occurrence Handle10.1016/S0092-8674(00)81717-1 Occurrence Handle9875847

    Article  PubMed  Google Scholar 

  32. J.-P. Ryckaert G. Ciccotti H.J.C. Berendsen (1977) J. Comput. Phys. 23 327 Occurrence Handle10.1016/0021-9991(77)90098-5

    Article  Google Scholar 

  33. H.J.C. Berendsen J.P.M. Postma W.F. van Gunsteren A. DiNola J.R. Haak (1984) J. Chem. Phys. 81 3684 Occurrence Handle10.1063/1.448118

    Article  Google Scholar 

  34. W. Kabsch C. Sander (1983) Biopolymers 22 2577 Occurrence Handle6667333

    PubMed  Google Scholar 

  35. J. Sadowski J. Gasteiger (1993) Chem. Rev. 93 2567 Occurrence Handle10.1021/cr00023a012

    Article  Google Scholar 

  36. M. Stahl M. Rarey (2001) J. Med. Chem. 44 1035 Occurrence Handle10.1021/jm0003992 Occurrence Handle11297450

    Article  PubMed  Google Scholar 

  37. S.C. Lovell J.M. Word J.S. Richardson D.C. Richardson (1999) Proc. Natl. Acad. Sci. (USA) 96 400 Occurrence Handle10.1073/pnas.96.2.400

    Article  Google Scholar 

  38. R.N. Hanson C.Y. Lee C.J. Friel R. Dilis A. Hughes E.R. DeSombre (2003) J. Med. Chem. 462 865

    Google Scholar 

  39. F. Nicolas S. Elie V. Anne S. Emmanuel H. Jan-Martin H. Michel (2003) J. Chem. Bio. Chem. 4 494

    Google Scholar 

  40. G.M. Anstead K.E. Carlson J.A. Katzenellenbogen (1997) Steroids 62 268–303 Occurrence Handle10.1016/S0039-128X(96)00242-5 Occurrence Handle9071738

    Article  PubMed  Google Scholar 

  41. B. Lee F.M. Richards (1971) J. Mol. Biol. 55 379 Occurrence Handle10.1016/0022-2836(71)90324-X Occurrence Handle5551392

    Article  PubMed  Google Scholar 

  42. C.F. Bissantz G. D. Rognan (2000) J. Med. Chem. 43 4759 Occurrence Handle10.1021/jm001044l Occurrence Handle11123984

    Article  PubMed  Google Scholar 

  43. J. M.S. Yang T.W. (2005) Proteins 25 777

    Google Scholar 

  44. H. Mattras S. Aliau E. Richard J.C. Bonnafous P. Jouin J.L. Borgna (2002) Biochem. 41 15713 Occurrence Handle10.1021/bi0205092

    Article  Google Scholar 

  45. V.V. Sumbayev E.C. Bonefeld-Jorgensen T. Wind P.A. Andreasen (2005) FEBS Lett. 579 541 Occurrence Handle10.1016/j.febslet.2004.12.025 Occurrence Handle15642373

    Article  PubMed  Google Scholar 

  46. S M.H. Aliau E. Richard J.C. Bonnafous J.L. Borgna (2002) Biochemistry 41 7979 Occurrence Handle10.1021/bi0121914 Occurrence Handle12069588

    Article  PubMed  Google Scholar 

  47. J.L. Borgna S.J. (1991) Eur. J. Biochem. 199 575 Occurrence Handle10.1111/j.1432-1033.1991.tb16157.x Occurrence Handle1868844

    Article  PubMed  Google Scholar 

  48. W.G. Richards ( 2002) Nat. Rev. Drug Discov. 7 551 Occurrence Handle10.1038/nrd841

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagarajan Pattabiraman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sivanesan, D., Rajnarayanan, R.V., Doherty, J. et al. In-silico Screening using Flexible Ligand Binding Pockets: A Molecular Dynamics-based Approach. J Comput Aided Mol Des 19, 213–228 (2005). https://doi.org/10.1007/s10822-005-4788-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-005-4788-9

Keywords

Navigation