Skip to main content
Log in

Prediction of standard Gibbs energies of the transfer of peptide anions from aqueous solution to nitrobenzene based on support vector machine and the heuristic method

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

Quantitative structure-property relationship (QSPR) method was performed for the prediction of the standard Gibbs energies (ΔGθ) of the transfer of peptide anions from aqueous solution to nitrobenzene. Descriptors calculated from the molecular structures alone were used to represent the characteristics of the peptides. The four molecular descriptors selected by the heuristic method (HM) in COmprehensive DEscriptors for Structural and Statistical Analysis (CODESSA) were used as inputs for support vector machine (SVM) and radial basis function neural networks (RNFNN). The results obtained by the novel machine learning technique, SVM, were compared with those obtained by HM and RBFNN. The root mean squared errors (RMS) of the training, predicted and overall data sets are 2.192, 2.541 and 2.267 unit (kJ/mol) for HM, 1.604, 2.478 and 1.817 unit (kJ/mol) for RBFNN and 1.5621, 2.364 and 1.756 unit (kJ/mol) for SVM, respectively. The prediction results were in agreement with the experimental values. This paper provided a potential method for predicting the physiochemical property (ΔGθ) of various small peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Volkov A.G., Liquid Interfaces in Chemical, Biological, and Pharmaceutical Applications Marcel Dekker NewYorks Basel 2001

    Google Scholar 

  2. Lyman, W.J., Reehl, W.F. and Rosenblatt, D.H. (Eds.), Handbook of Chemical Property Estimation, American Chemical Society, Washington, DC, 1990

  3. Hansch C., Quinlan J.E., Lawrence G.L., (1968) J. Org. Chem. 33: 347

    Article  CAS  Google Scholar 

  4. Li X., Glen R.C., Clark R.D., (2003) J. Chem. Inf. Comput. Sci. 43: 870

    Article  Google Scholar 

  5. Plass, M. Habilitation Thesis, Martin Luther University, Halle-Wittenberg, Germany, 2000 Chapters 1 and 2

  6. Testa B., van de Waterbeemd H., Folkers G., Gay R., Pharmacokinetic Optimization in Drug Research Chapter 6 Wiley-WCH Weinheim, Germany 2001. 591–613

    Google Scholar 

  7. Reymond F., Steyaert G., Carrupt P.A., Testa B., Girault H.H., (1996) J. Am. Chem. Soc. 118: 11951

    Article  CAS  Google Scholar 

  8. Testa B., van de Waterbeemd H., Folkers G., Gay R., Pharmacokinetic Optimization in Drug Research Chapter 6 Wiley-WCH Weinheim, Germany 2001. 275–304

    Google Scholar 

  9. Gulaboski R., Mirceski V., Scholz F., (2003) Amino Acids 24: 149

    CAS  Google Scholar 

  10. Komorsky-Lovric´ S., Riedl K., Gulaboski R., Mircjeski V., Scholz F., (2002) Langmuir 18: 8000

    Article  CAS  Google Scholar 

  11. Marcus Y., Ion Properties Marcel Dekker New York 1997, pp 212–219

    Google Scholar 

  12. Volkov A.G., 2001, Liquid Interfaces in Chemical, Biological and Pharmaceutical Applications 95, Marcel Dekker New York 729–773.Chapter 3

    Google Scholar 

  13. Marcus Y., Ion Properties Marcel Dekker New York 1997

    Google Scholar 

  14. Gulaboski R., Scholz F., (2003) J. Phys. Chem. B 107: 5650

    Article  CAS  Google Scholar 

  15. Liu H.X., Xue C.X., Zhang R.S., Yao X.J., Liu M.C., Hu Z.D., Fan B.T., (2004) J. Chem. Inf. Comput. Sci. 44: 1979

    Article  CAS  Google Scholar 

  16. Maldonado, A.G., Doucet, J.P., Petitjean, M. and Fan, B.T., Mol Divers, 10 (2006) 39

  17. HyperChem 6.01, Hypercube, Inc., 2000

  18. MOPAC, v.6.0 Quantum Chemistry Program Exchange, Program 455, Indiana University, Bloomington, IN

  19. Katritzky A.R., Lobanov V.S., Karelson M., CODESSA: Training ManualUniversity of Florida Gainesville, FL 1995

    Google Scholar 

  20. Katritzky A.R., Lobanov V.S.,.Karelson M., CODESSA: Reference ManualUniversity of Florida Gainesville, FL 1994

    Google Scholar 

  21. Luan F., Xue C.X., Zhang R.S., Zhao C.Y., Liu M.C., Hu Z.D., Fan B.T., (2005) Analytica Chimica Acta 537: 101

    Article  CAS  Google Scholar 

  22. Vapnik V.N., Statistical Learning Theory John Wiley & Sons New York 1998

    Google Scholar 

  23. Schölkopf B., Smola A., Learning with Kernels MIT Press Cambridge, MA 2002

    Google Scholar 

  24. Tay F.E.H., Cao L.J., (2002) Neurocomputing 48: 847

    Article  Google Scholar 

  25. Luan F., Zhang R.S., Liu M.C., Hu Z.D., Fan B.T., (2005) QSAR Comb. Sci. 24: 227

    Article  CAS  Google Scholar 

  26. Derks E.P.P.A., Sanchez Pastor M.S., Buydens L.M.C., (1995) Chemom. Int. Lab. Sys. 28: 49

    Article  CAS  Google Scholar 

  27. Xiang Y.H., Liu M.C., Zhang X.Y., Zhang R.S., Hu Z.D., (2002) J. Chem. Inf. Comput. Sci. 42: 592

    Article  CAS  Google Scholar 

  28. Topliss J.G., Edwards R.P., (1979) J. Med. Chem. 22: 1238

    Article  CAS  Google Scholar 

  29. Kier L.B., Hall L.H., (2000) J. Chem. Inf. Comput. Sci. 40: 792

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (NSFC) Fund (NO.20305008) for financial support. The authors also thank the Association Franco-Chinoise pour la Recherche Scientifique & Technique (AFCRST) for supporting this study (Programme PRA SI 02–03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang Ruisheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, L., Xiaoyun, Z., Haixia, Z. et al. Prediction of standard Gibbs energies of the transfer of peptide anions from aqueous solution to nitrobenzene based on support vector machine and the heuristic method. J Comput Aided Mol Des 20, 1–11 (2006). https://doi.org/10.1007/s10822-005-9031-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-005-9031-1

Keywords

Navigation