Skip to main content
Log in

Comparative residue interaction analysis (CoRIA): a 3D-QSAR approach to explore the binding contributions of active site residues with ligands

  • Original Paper
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

A novel approach termed comparative residue-interaction analysis (CoRIA), emphasizing the trends and principles of QSAR in a ligand–receptor environment has been developed to analyze and predict the binding affinity of enzyme inhibitors. To test this new approach, a training set of 36 COX-2 inhibitors belonging to nine families was selected. The putative binding (bioactive) conformations of inhibitors in the COX-2 active site were searched using the program DOCK. The docked configurations were further refined by a combination of Monte Carlo and simulated annealing methods with the Affinity program. The non-bonded interaction energies of the inhibitors with the individual amino acid residues in the active site were then computed. These interaction energies, plus specific terms describing the thermodynamics of ligand–enzyme binding, were correlated to the biological activity with G/PLS. The various QSAR models obtained were validated internally by cross validation and boot strapping, and externally using a test set of 13 molecules. The QSAR models developed on the CoRIA formalism were robust with good r 2, q 2 and r 2pred values. The major highlights of the method are: adaptation of the QSAR formalism in a receptor setting to answer both the type (qualitative) and the extent (quantitative) of ligand–receptor binding, and use of descriptors that account for the complete thermodynamics of the ligand–receptor binding. The CoRIA approach can be used to identify crucial interactions of inhibitors with the enzyme at the residue level, which can be gainfully exploited in optimizing the inhibitory activity of ligands. Furthermore, it can be used with advantage to guide point mutation studies. As regards the COX-2 dataset, the CoRIA approach shows that improving Coulombic interaction with Pro528 and reducing van der Waals interaction with Tyr385 will improve the binding affinity of inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hansch C, Maloney PP, Fujita T, Muir RM (1962) Nature 194:178

    Article  CAS  Google Scholar 

  2. Hansch C, Muir RM, Fujita T, Maloney PP, Geiger CF, Streich M (1963) J Am Chem Soc 85:2817

    Article  CAS  Google Scholar 

  3. Hansch C, Fujita T (1964) J Am Chem Soc 86:5175

    Article  Google Scholar 

  4. Cramer RD III, Patterson DE, Bunce JD (1988) J Am Chem Soc 110:5959

    Article  CAS  Google Scholar 

  5. Tokarski JS, Hopfinger AJ (1994) J Med Chem 37:3639

    Article  CAS  Google Scholar 

  6. Klebe G, Abraham U, Mietzner T (1994) J Med Chem 37:4130

    Article  CAS  Google Scholar 

  7. Havel TF, Kuntz ID, Crippen GM (1983) Bull Math Biol 45:665

    Google Scholar 

  8. Doweyko AM (1988) J Med Chem 31:1396

    Article  CAS  Google Scholar 

  9. Walters DE, Hinds RM (1994) J Med Chem 37:2527

    Article  CAS  Google Scholar 

  10. Jain AN, Koile K, Chapman D (1994) J Med Chem 37:2315

    Article  CAS  Google Scholar 

  11. Müller K (ed) (1995) Perspectives in drug discovery and design, vol 3. ESCOM Science Publishers, BV, Leiden, pp 1–20

  12. Nelson LM, Malhotra D, Hopfinger AJ (1981) Comput Chem 5:19

    Article  Google Scholar 

  13. Ortiz AR, Pisabarro MT, Gago F, Wade RC (1995) J Med Chem 38:2681

    Article  CAS  Google Scholar 

  14. Gohlke H, Klebe G (2002) J Med Chem 45:4153

    Article  CAS  Google Scholar 

  15. Vedani A, Briem H, Dobler M, Dollinger K, McMasters DR (2000) J Med Chem 43:4416

    Article  CAS  Google Scholar 

  16. Vedani A, Dobler M (2002) J Med Chem 45:2139

    Article  CAS  Google Scholar 

  17. Vedani A, Dobler M, Lill L (2005) J Med Chem 48:3700

    Article  CAS  Google Scholar 

  18. Tokarski JS, Hopfinger AJ (1997) J Chem Info Comput Sci 37:792

    Article  CAS  Google Scholar 

  19. Charifson PS (ed) (1997) Practical application of computer-aided drug design, Marcel Dekker Inc., pp 355–410

  20. Delphi 2.5, User Guide. Accelrys Inc., San Diego, CA, USA

  21. Scott WR, Schiffer CA (2000) Structure Fold Des 8:1259

    Article  CAS  Google Scholar 

  22. Charifson PS (ed) (1997) Practical application of computer-aided drug design. Marcel Dekker Inc., pp 495–538

  23. Knetgel RMA, Grootenhuis PDJ (1998) Perspect Drug Discov Des 9–11:99

    Google Scholar 

  24. Williams DH, Cox JPL, Doig AJ, Garner M, Gerhard U, Kaye PT, Lal AR, Nicholls IA, Salter J, Mitchell RC (1991) J Am Chem Soc 113:7020

    Article  CAS  Google Scholar 

  25. InsightII, version 2000.3 L. Accelrys Inc., San Diego, CA, USA

  26. Dauber-Osguthorpe P, Roberts VA, Osguthorpe DJ, Wolff J, Genest M, Hagler AT (1988) Proteins 4:31

    Article  CAS  Google Scholar 

  27. Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE (1982) J Mol Biol 161:269

    Article  CAS  Google Scholar 

  28. Affinity v. 98 Molecular Modeling Program Package. Accelrys Inc. San Diego, CA, 1998

  29. Cerius2 version 4.8. Accelrys Inc., San Diego CA, 1999

  30. Khanna IK, Weier RM, Yu Y, Collins PW, Miyashiro JM, Koboldt CM, Veenhuizen AW, Currie JL, Seibert K, Isakson PC (1997) J Med Chem 40:1619

    Article  CAS  Google Scholar 

  31. Khanna IK, Weier RM, Yu Y, Xu XD, Koszyk FJ, Collins PW, Koboldt CM, Veenhuizen AW, Perkins WE, Casler JJ, Masferrer JL, Zhang YY, Gregory SA, Seibert K, Isakson PC (1997) J Med Chem 40:1634

    Article  CAS  Google Scholar 

  32. Khanna IK, Yu Y, Huff RM, Weier RM, Xu X, Koszyk FJ, Collins PW, Cogburn JN, Isakson PC, Koboldt CM, Masferrer JL, Perkins WE, Seibert K, Veenhuizen AW, Yuan J, Yang DC, Zhang YY (2000) J Med Chem 43:3168

    Article  CAS  Google Scholar 

  33. Reitz DB, Li JJ, Norton MB, Reinhart EJ, Collins JT, Anderson GD, Gregory SA, Koboldt CM, Perkins WE, Seibert K, Isakson PC (1994) J Med Chem 38:3878

    Article  Google Scholar 

  34. Li JJ, Anderson GD, Burton EG, Cogburn JN, Collins JT, Garland DJ, Gregory SA, Huang HC, Isakson PC, Koboldt CM, Logusch EW, Norton MB, Perkins WE, Reinhart EJ, Seibert K, Veenhuizen AW, Zhang Y, Reitz DB (1995) J Med Chem 38:4570

    Article  CAS  Google Scholar 

  35. Li JJ, Norton MB, Reinhart EJ, Anderson GD, Gregory SA, Isakson PC, Koboldt CM, Masferrer JL, Perkins WE, Seibert K, Zhang Y, Zweifel BS, Reitz DB (1996) J Med Chem 39:1846

    Article  CAS  Google Scholar 

  36. Penning TD, Talley JJ, Bertenshaw SR, Carter JS, Collins PW, Docter S, Graneto MJ, Lee LF, Malecha JW, Miyashiro JM, Rogers RS, Rogier DJ, Yu SS, Anderson GD, Burton EG, Cogburn JN, Gregory SA, Koboldt CM, Perkins WE, Seibert K, Veenhuizen AW, Zhang YY, Isakson PC (1997) J Med Chem 40:1347

    Article  CAS  Google Scholar 

  37. Huang HC, Li JJ, Garland DJ, Chamberlain TS, Reinhart EJ, Manning RE, Seibert K, Koboldt CM, Gregory SA, Anderson GD, Veenhuizen AW, Zhang Y, Perkins WE, Burton EG, Cogburn JN, Isakson PC, Reitz DB (1996) J Med Chem 39:253

    Article  CAS  Google Scholar 

  38. Talley JJ, Brown DL, Carter JS, Graneto MJ, Koboldt CM, Masferrer JL, Perkins WE, Rogers RS, Shaffer AF, Zhang YY, Zweifel BS, Seibert K (2000) J Med Chem 43:775

    Article  CAS  Google Scholar 

  39. Lee LF (1996) Pat. No. WO 9624585, US

  40. Song Y, Connor DT, Doubleday R, Sorenson RJ, Sercel AD, Unangst PC, Roth BD, Gilbertsen RB, Chan K, Schrier DJ, Guglietta A, Bornemeier DA, Dyer RD (1999) J Med Chem 42:1151

    Article  CAS  Google Scholar 

  41. Song Y, Connor DT, Sercel AD, Sorenson RJ, Doubleday R, Unangst PC, Roth BD, Gilbertsen RB, Chan K, Schrier DJ, Guglietta A, Bornemeier DA, Dyer RD (1999) J Med Chem 42:1161

    Article  CAS  Google Scholar 

  42. Kurumbail RG, Stevens AM, Gierse JK, McDonald JJ, Stegeman RA, Pak JY, Gildehaus D, Miyashiro JM, Penning TD, Seibert K, Isakson PC, Stallings WC (1996) Nature 384:644

    Article  CAS  Google Scholar 

  43. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28:235

    Article  CAS  Google Scholar 

  44. MS, QCPE. Creative Arts Bldg. 181, Indiana University, Bloomington, IN 47405

  45. Ding HQ, Karasawa N, Goddard WA III (1992) J Chem Phys 97:4309

    Article  CAS  Google Scholar 

  46. Nicholls A, Honig B (1991) J Comput Chem 12:435

    Article  CAS  Google Scholar 

  47. Maple JR, Hwang M-J, Stockfisch TP, Dinur U, Waldman M, Ewig CS, Hagler AT (1994) J Comput Chem 15:162

    Article  CAS  Google Scholar 

  48. Dixit SB, Bhasin R, Rajasekaran E, Jayaram B (1997) J Chem Soc Faraday Trans 93:1105

    Article  CAS  Google Scholar 

  49. Waller CL, Marshall GR (1993) J Med Chem 36:2390

    Article  CAS  Google Scholar 

  50. Kodithala K, Hopfinger AJ, Thompson ED, Robinson MK (2002) Toxicol Sci 66:336

    Article  CAS  Google Scholar 

  51. Stanton DT, Jurs PC (1990) Anal Chem 62:2323

    Article  CAS  Google Scholar 

  52. Ghose A, Crippen G (1986) J Comput Chem 7:565

    Article  CAS  Google Scholar 

  53. Rogers D, Hopfinger AJ (1994) J Chem Inf Comput Sci 34:854

    Article  CAS  Google Scholar 

  54. Kubinyi H. (ed) (1993) 3D QSAR in drug design: theory, methods and applications, ESCOM, Leiden, pp 523–550

    Google Scholar 

  55. Cerius2 4.8, User’s Manual. Accelrys Inc., San Diego, CA, USA

  56. Vieth M, Cummins DJ (2000) J Med Chem 43:3020

    Article  CAS  Google Scholar 

  57. Ryn JV, Trummlitz G, Pairet M (2000) Curr Med Chem 7:1145

    Google Scholar 

  58. Shimokawa T, Kulmacz RJ, DeWitt DL, Smith WL (1990) J Biol Chem 265:20073

    CAS  Google Scholar 

  59. Kalgutkar AS, Crews BC, Rowlinson SW, Marnett AB, Kozak KR, Remmel RP, Marnett LJ (2000) Proc Natl Acad Sci USA 97:925

    Article  CAS  Google Scholar 

  60. So OY, Scarafia E, Mak AY, Callan OH, Swinney DC (1998) J Biol Chem 273:5801

    Article  CAS  Google Scholar 

  61. Greig GM, Francis DA, Falgueyret JP, Ouellet M, Percival MD, Roy P, Bayly C, Mancini JA, O’Neil GP (1997) Mol Pharmacol 52:829

    CAS  Google Scholar 

  62. Desiraju GR, Gopalakrishnan B, Jetti RKR, Raveendra D, Sarma JARP, Subramanya HS (2000) Molecules 7:945

    Article  Google Scholar 

  63. Chavatte P, Yous S, Lesieur D (2001) J Med Chem 44:3223

    Article  CAS  Google Scholar 

  64. Liu H, Huang X, Shen J, Luo X, Li M, Xiong H, Chen G, Shen J, Yang Y, Jiang H, Chen K (2002) J Med Chem 45:4816

    Article  CAS  Google Scholar 

  65. Datar PA, Coutinho EC (2004) J Mol Graph Model 23:239

    Article  CAS  Google Scholar 

  66. Kim H-J, Chae CH, Yi KY, Park K-L, Yoo S (2004) Bioorg Med Chem 12:1629

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was made possible by a grant [01(1986)/05/EMR-II] from the Council of Scientific and Industrial Research (CSIR), New Delhi to E. C. Coutinho. S. A. Khedkar and A. K. Malde thank CSIR for financial support. We thank Dr. Krishna Iyer for useful suggestions during the course of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evans C. Coutinho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Datar, P.A., Khedkar, S.A., Malde, A.K. et al. Comparative residue interaction analysis (CoRIA): a 3D-QSAR approach to explore the binding contributions of active site residues with ligands. J Comput Aided Mol Des 20, 343–360 (2006). https://doi.org/10.1007/s10822-006-9051-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-006-9051-5

Keywords

Navigation