Skip to main content
Log in

Do benzodiazepines mimic reverse-turn structures?

  • Original Paper
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The role of benzodiazepine derivatives (BZD) as a privileged scaffold that mimics β-turn structures (Ripka et al. (1993) Tetrahedron 49:3593–3608) in peptide/protein recognition was reexamined in detail. Stable BZD ring conformers were determined with MM3, and experimental reverse-turn structures were extracted from the basis set of protein crystal structures previously defined by Ripka et al. Ideal β-turns were also modeled and similarly compared with BZD conformers. Huge numbers of conformers were generated by systematically scanning the torsional degrees of freedom for BZDs, as well as those of ideal β-turns for comparison. Using these structures, conformers of BZDs were fit to experimental structures as suggested by Ripka et al., or modeled classical β-turn conformers, and the root-mean-square deviation (RMSD) values were calculated for each pairwise comparison. Pairs of conformers with the smallest RMSD values for overlap of the four α–β side-chain orientations were selected. All overlaps of BZD conformers with experimental β-turns yielded one or more comparisons where the least RMSD was significantly small, 0.48–0.86 Å, as previously suggested. Utilizing a different methodology, the overall conclusion that benzodiazepines could serve as reverse-turn mimetics of Ripka et al. is justified. The least RMSD values for the overlap of BZDs and modeled classical β-turns were also less than 1 Å. When comparing BZDs with experimental or classical β-turns, the set of experimental β-turns selected by Ripka et al. fit the BZD scaffolds better than modeled classical β-turns; however, all the experimental β-turns did not fit a particular BZD scaffold better. A single BZD ring conformation, and/or chiral orientation, can mimic some, but not all, of the experimental β-turn structures. BZD has two central ring conformations and one chiral center that explains why the four variations of the BZD scaffold can mimic all types of β-turn structure examined. It was found, moreover, that the BZD scaffold also mimics each of the nine clusters of experimental orientations of side chains of reverse turns in the Protein Data Bank, when the new classification scheme for the four side-chain directions (the relative orientations of α–β vectors of residues i through i+3) was considered (Tran et al. (2005) J Comput-Aided Mol Des 19:551–566).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rose GD, Gierasch LM, Smith JA (1985) Turns in peptides and proteins. In: Adv Protein Chem, vol 37. Academic Press, pp 1–109

  2. Stanfield RL, Fieser TM, Lerner RA, Wilson IA (1990) Science 248(4956):712–719

    Article  CAS  Google Scholar 

  3. Rini JM, Schulze-Gahmen U, Wilson IA (1992) Science 255(5047):959–965

    Article  CAS  Google Scholar 

  4. Garcia KC, Ronco PM, Verroust PJ, Brünger AT, Amzel LM (1992) Science 257(5069):502–507

    Article  CAS  Google Scholar 

  5. Nikiforovich GV, Marshall GR (1993) Biochem Biophys Res Commun 195(1):222–228

    Article  CAS  Google Scholar 

  6. Plucinska K, Kataoka T, Yodo M, Cody WL, He JX, Humblet C, Lu GH, Lunney E, Major TC, Panek RL, Schelkun P, Skeean R, Marshall GR (1993) J Med Chem 36(13):1902–1913

    Article  CAS  Google Scholar 

  7. Kyle DJ, Blake PR, Smithwick D, Green LM, Martin JA, Sinsko JA, Summers MF (1993) J Med Chem 36(10):1450–1460

    Article  CAS  Google Scholar 

  8. Nikiforovich GV, Marshall GR (1993) Int J Peptide Protein Res 42(2):171–180

    Article  CAS  Google Scholar 

  9. Nikiforovich GV, Marshall GR (1993) Int J Peptide Protein Res 42(2):181–193

    Article  CAS  Google Scholar 

  10. Reddy DV, Jagannadh B, Dutta AS, Kunwar AC (1995) Int J Peptide Protein Res 46(1):9–17

    Article  CAS  Google Scholar 

  11. Nutt RF, Veber DF, Saperstein R (1980) J Am Chem Soc 102(21):6539–6545

    Article  CAS  Google Scholar 

  12. Brady SF, PalevedaJr WJ, Arison BH, Saperstein R, Brady EJ, Raynor K, Reisine T, Veber DF, Freidinger RM (1993) Tetrahedron 49(17):3449

    Article  CAS  Google Scholar 

  13. Ripka AS, Rich DH (1998) Curr Opin Chem Biol 2(4):441

    Article  CAS  Google Scholar 

  14. Suat K, Jois SDS (2003) Curr Pharm Des 9(15):1209–1224

    Article  Google Scholar 

  15. Hirschmann R, Nicolaou KC, Pietranico S, Leahy EM, Salvino J, Arison B, Cichy MA, Spoors PG, Shakespeare WC, Sprengeler PA, Hamley P, Smith AB III, Reisine T, Raynor K, Maechler L, Donaldson C, Vale W, Freidinger RM, Cascieri MR, Strader CD (1993) J Am Chem Soc 115(26):12550–12568

    Article  CAS  Google Scholar 

  16. Hirschmann R, Yao W, Cascieri MA, Strader CD, Maechler L, Cichy-Knight MA, Hynes J, van Rijn RD, Sprengeler PA, Smith AB (1996) J Med Chem 39(13):2441–2448

    Article  CAS  Google Scholar 

  17. Reaka AJH, Ho CMW, Marshall GR (2002) J Comput-Aided Mol Des 16(8–9):585–600

    Article  CAS  Google Scholar 

  18. Hirschmann R, Sprengeler PA, Kawasaki T, Leahy JW, Shakespeare WC, Smith AB (1992) J Am Chem Soc 114(24):9699–9701

    Article  CAS  Google Scholar 

  19. Nagai U, Sato K, Nakamura R, Kato R (1993) Tetrahedron 49(17):3577–3592

    Article  CAS  Google Scholar 

  20. Cornille F, Slomczynska U, Smythe ML, Beusen DD, Moeller KD, Marshall GR (1995) J Am Chem Soc 117(3):909–917

    Article  CAS  Google Scholar 

  21. Evans BE, Rittle KE, Bock MG, DiPardo RM, Freidinger RM, Whitter WL, Lundell GF, Veber DF, Anderson PS, Chang RSL, Lotti VJ, Cerino DJ, Chen TB, Kling PJ, Kunkel KA, Springer JP, Hirshfield J (1988) J Med Chem 31(12):2235–2246

    Article  CAS  Google Scholar 

  22. Horton DA, Bourne GT, Smythe ML (2003) Chem Rev 103(3):893–930

    Article  CAS  Google Scholar 

  23. Breinbauer R, Vetter IR, Waldmann H (2002) Angew Chem Int Ed 41(16):2878–2890

    Article  CAS  Google Scholar 

  24. Fecik RA, Frank KE, Gentry EJ, Menon SR, Mitscher LA, Telikepalli H (1998) Med Res Rev 18(3):149–185

    Article  CAS  Google Scholar 

  25. Ellman JA (1996) Acc Chem Res 29(3):132–143

    Article  CAS  Google Scholar 

  26. Ripka WC, De Lucca GV, Bach AC II, Pottorf RS, Blaney JM (1993) Tetrahedron 49(17):3593–3608

    Article  CAS  Google Scholar 

  27. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28(1):235–242

    Article  CAS  Google Scholar 

  28. SYBYL 7.1 (2005) Molecular modeling system. Tripos Associates, Inc., St. Louis, MO

    Google Scholar 

  29. Iijima H, Dunbar JB Jr, Marshall GR (1987) Proteins 2(4):330–339

    Article  CAS  Google Scholar 

  30. Hutchinson EG, Thornton JM (1994) Protein Sci 3(12):2207–2216

    Article  CAS  Google Scholar 

  31. Allen FH (2002) Acta Crystallogr B 58(3–1):380–388

    Article  CAS  Google Scholar 

  32. Miki T, Kori M, Fujishima A, Mabuchi H, Tozawa R, Nakamura M, Sugiyama Y, Yukimasa H (2002) Bioorg Med Chem 10(2):385–400

    Article  CAS  Google Scholar 

  33. Visnjevac A, Kojic-Prodic B (2001) Acta Crystallogr E 57(4):o356–o357

    Article  CAS  Google Scholar 

  34. Rambaud J, Dubourg A, Delarbre J-L, Roger J, Maury L, Declercq J-P (1991) Bull Soc Chim Belg 100(7):521–526

    Article  CAS  Google Scholar 

  35. Tran T, McKie J, Meutermans W, Bourne G, Andrews P, Smythe M (2005) J Comput-Aided Mol Des 19(8):551–566

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Chris M.W. Ho for programming and optimizing the RMSD fitting program. The authors are also grateful to Dr. Jon Våbenø for meaningful discussion of our preliminary results, and Dr. Christina M. Taylor for reviewing the manuscript. Dr. Masayuki Hata was supported by a grant from the Overseas Advanced Educational Research Practice Support Program by The Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan. Research support from the National Institutes of Health (GM068460) is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garland R. Marshall.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hata, M., Marshall, G. Do benzodiazepines mimic reverse-turn structures?. J Comput Aided Mol Des 20, 321–331 (2006). https://doi.org/10.1007/s10822-006-9059-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-006-9059-x

Keywords

Navigation