Skip to main content
Log in

Conformational specificity of non-canonical base pairs and higher order structures in nucleic acids: crystal structure database analysis

  • Original Paper
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Non-canonical base pairs contribute immensely to the structural and functional variability of RNA, which calls for a detailed characterization of their spatial conformation. Intra-base pair parameters, namely propeller, buckle, open-angle, stagger, shear and stretch describe structure of base pairs indicating planarity and proximity of association between the two bases. In order to study the conformational specificities of non-canonical base pairs occurring in RNA crystal structures, we have upgraded NUPARM software to calculate these intra-base pair parameters using a new base pairing edge specific axis system. Analysis of base pairs and base triples with the new edge specific axis system indicate the presence of specific structural signatures for different classes of non-canonical pairs and triples. Differentiating features could be identified for pairs in cis or trans orientation, as well as those involving sugar edges or C–H-mediated hydrogen bonds. It was seen that propeller for all types of base pairs in cis orientation are generally negative, while those for trans base pairs do not have any preference. Formation of a base triple is seen to reduce propeller of the associated base pair along with reduction of overall flexibility of the pairs. We noticed that base pairs involving sugar edge are generally more non-planar, with large propeller or buckle values, presumably to avoid steric clash between the bulky sugar moieties. These specific conformational signatures often provide an insight into their role in the structural and functional context of RNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gesteland RF, Cech TR, Atkins JF (1999) The RNA world, 2nd edn. Cold Spring Harbor Laboratory, New York

  2. Hermann T, Westhof E (1999) Chem Biol 6:R335

    Article  CAS  Google Scholar 

  3. Hoogsteen K (1963) Acta Crystallogr 16:907

    Article  CAS  Google Scholar 

  4. Topal MD, Fresco JR (1976) Nature 263:289

    Article  CAS  Google Scholar 

  5. Wahl MC, Rao ST, Sundaralingam M (1996) Nat Struct Biol 3:24

    Article  CAS  Google Scholar 

  6. Nissen P, Ippolito JA, Ban N, Moore PB, Steitz TA (2001) Proc Natl Acad Sci USA 98:4899

    Article  CAS  Google Scholar 

  7. Leontis NB, Westhof E (2001) RNA 7:499

    Article  CAS  Google Scholar 

  8. Leontis NB, Stombaugh J, Westhof E (2002) Nucleic Acids Res 30:3497

    Article  CAS  Google Scholar 

  9. Duarte CM, Pyle AM (1998) J Mol Biol 284:1465

    Article  CAS  Google Scholar 

  10. Gendron P, Lemieux S, Major F (2001) J Mol Biol 308:919

    Article  CAS  Google Scholar 

  11. Klosterman PS, Tamura M, Holbrook SR, Brenner SE (2002) Nucleic Acids Res 30:392

    Article  CAS  Google Scholar 

  12. Lemieux S, Major F (2002) Nucleic Acids Res 30:4250

    Article  CAS  Google Scholar 

  13. Nagaswamy U, Larios-Sanz M, Hury J, Collins S, Zhang Z, Zhao Q, Fox GE (2002) Nucleic Acids Res 30:395

    Article  CAS  Google Scholar 

  14. Walberer BJ, Cheng AC, Frankel AD (2003) J Mol Biol 327:767

    Article  CAS  Google Scholar 

  15. Lee JC, Gutell RR (2004) J Mol Biol 344:1225

    Article  CAS  Google Scholar 

  16. Sykes MT, Levitt M (2005) J Mol Biol 351:26

    Article  CAS  Google Scholar 

  17. Das J, Mukherjee S, Mitra A, Bhattacharyya D (2006) J Biomol Struct Dyn 24:149

    CAS  Google Scholar 

  18. Saenger W (1984) Principles of nucleic acid structure. Springer, Berlin Heidelberg New York

    Google Scholar 

  19. Sponer JE, Spackova N, Kulhanek P, Leszczynski J, Sponer J (2005) J Phys Chem 109A:2292

    Google Scholar 

  20. Bhattacharyya D, Koripella SC, Mitra A, Rajendran VB, Sinha B (2006) Manuscript in preparation

  21. Mathews DH, Sabina J, Zuker M, Turner DH (1999) J Mol Biol 288:911

    Article  CAS  Google Scholar 

  22. Dima RI, Hyeon C, Thirumalai D (2005) J Mol Biol 347:53

    Article  CAS  Google Scholar 

  23. Florian J, Sponer J, Warshel A (1999) J Phys Chem B 103:884

    Article  CAS  Google Scholar 

  24. Go M, Go N (1976) Biopolymers 15:1119

    Article  CAS  Google Scholar 

  25. Olson WK, Gorin AA, Lu XJ, Hock LM, Zhurkin VB (1998) Proc Natl Acad Sci USA 95:11163

    Article  CAS  Google Scholar 

  26. Olson WK, Bansal M, Burley SK, Dickerson RE, Gerstein M, Harvey SC, Heinmann U, Lu XJ, Neidle S, Shakked Z, Sklenar H, Suzuki M, Tung CS, Westhof E, Wolberger C, Berman HM (2001) J Mol Biol 313:229

    Article  CAS  Google Scholar 

  27. Calladine CR (1982) J Mol Biol 161:343

    Article  CAS  Google Scholar 

  28. Bhattacharyya D, Bansal M (1992) J Biomol Struct Dyn 10:213

    CAS  Google Scholar 

  29. Lu XJ, Olson WK (2003) Nucleic Acids Res 31:5108

    Article  CAS  Google Scholar 

  30. Leontis NB, Westhof E (2003) Curr Opin Struct Biol 13:300

    Article  CAS  Google Scholar 

  31. Stark A, Brennecke J, Russell RB, Cohen SM (2003) PloS Biol 1:397

    Article  CAS  Google Scholar 

  32. Peyret N, Seneviratne A, Allawi HT, SantaLucia J Jr (1999) Biochemistry 38:3468

    Article  CAS  Google Scholar 

  33. Michel F, Westhof E (1990) J Mol Biol 216:585

    Article  CAS  Google Scholar 

  34. Gautheret D, Damberger SH, Gutell RR (1995) J Mol Biol 248:27

    Article  CAS  Google Scholar 

  35. Gautheret D, Gutell RR (1997) Nucleic Acids Res 25:1559

    Article  CAS  Google Scholar 

  36. Razga F, Koca J, Sponer J, Leontis NB (2005) Biophys J 88:3466

    Article  CAS  Google Scholar 

  37. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28:235

    Article  CAS  Google Scholar 

  38. Yang H, Jossinet F, Leontis N, Chen L, Westbrook J, Berman H, Westhof E (2003) Nucleic Acids Res 31:3450

    Article  CAS  Google Scholar 

  39. Berman HM, Olson WK, Beveridge DL, Westbrook J, Gelbin A, Demeny T, Hsieh SH, Srinivasan AR, Schneider B (1992) Biophys J 63:751

    Article  CAS  Google Scholar 

  40. El Hassan MA, Calladine CR (1995) J Mol Biol 251:648

    Article  CAS  Google Scholar 

  41. Lu XJ, El Hassan MA, Hunter CA (1997) J Mol Biol 273:668

    Article  CAS  Google Scholar 

  42. Gorin AA, Zhurkin VB, Olson WK (1995) J Mol Biol 247:34

    Article  CAS  Google Scholar 

  43. Kosikov KM, Gorin AA, Zhurkin VB, Olson WK (1999) J Mol Biol 289:1301

    Article  CAS  Google Scholar 

  44. Lavery R, Sklenar H (1988) J Biomol Struct Dyn 6:63

    CAS  Google Scholar 

  45. Lavery R, Sklenar H (1989) J Biomol Struct Dyn 6:655

    CAS  Google Scholar 

  46. Dickerson RE (1998) Nucleic Acids Res 26:1906

    Article  CAS  Google Scholar 

  47. Soumpasis DM, Tung CS (1988) J Biomol Struct Dyn 6:397

    CAS  Google Scholar 

  48. Tung CS, Soumpasis DM, Hummer G (1994) J Biomol Struct Dyn 11:1327

    CAS  Google Scholar 

  49. Bansal M, Bhattacharyya D, Ravi B (1995) CABIOS 11:281

    CAS  Google Scholar 

  50. Bhattacharyya D, Bansal M (1989) J Biomol Struct Dyn 6:645

    Google Scholar 

  51. Babcock MS, Pednault EPD, Olson WK (1993) J Biomol Struct Dyn 11:597

    CAS  Google Scholar 

  52. Babcock MS, Pednault EPD, Olson WK (1994) J Mol Biol 237:125

    Article  CAS  Google Scholar 

  53. Babcock MS, Olson WK (1994) J Mol Biol 237:98

    Article  CAS  Google Scholar 

  54. Holbrook SR (2005) Curr Opin Struct Biol 15:302

    Article  CAS  Google Scholar 

  55. Ghosh A, Bansal M (1999) J Mol Biol 294:1149

    Article  CAS  Google Scholar 

  56. Bandyopadhyay D, Bhattacharyya D (2006) Bioploymers 83:313

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Council of Scientific and Industrial Research (CSIR) and Department of Biotechnology (DBT), India, for financial support. We are thankful to Ms Jhuma Das for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhananjay Bhattacharyya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukherjee, S., Bansal, M. & Bhattacharyya, D. Conformational specificity of non-canonical base pairs and higher order structures in nucleic acids: crystal structure database analysis. J Comput Aided Mol Des 20, 629–645 (2006). https://doi.org/10.1007/s10822-006-9083-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-006-9083-x

Keywords

Navigation