Skip to main content

Advertisement

Log in

Feature-map vectors: a new class of informative descriptors for computational drug discovery

  • Original Paper
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

In order to develop robust machine-learning or statistical models for predicting biological activity, descriptors that capture the essence of the protein–ligand interaction are required. In the absence of structural information from X-ray or NMR experiments, deriving informative descriptors can be difficult. We have developed feature-map vectors (FMVs), a new class of descriptors based on chemical features, to address this challenge. FMVs, which are derived from the conformational models of a few actives, are low dimensional, problem specific, and highly interpretable. By using shape-based alignments and scoring with chemical features, FMVs can combine information about a molecule’s shape and the pharmacophores it can match. In five validation studies, bag classifiers built using FMVs have shown high enrichments for identifying actives for five diverse targets: CDK2, 5-HT3, DHFR, thrombin, and ACE. The interpretability of these descriptors has been demonstrated for CDK2 and 5-HT3, where the method automatically discovers the standard literature pharmacophore.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cramer RD 3rd, Patterson DE, Bunce JD (1988) J Am Chem Soc 110:5959

    Article  CAS  Google Scholar 

  2. Klebe G, Abraham U, Mietzner T (1994) J Med Chem 37:4130

    Article  CAS  Google Scholar 

  3. Guner O (ed) (2000) Pharmacophore perception, development, and use in drug design. International University Line, La Jolla

  4. Eksterowicz JE, Evensen E, Lemmen C, Brady GP, Lanctot JK, Bradley EK, Saiah E, Robinson LA, Grootenhuis PD, Blaney JM (2002) J Mol Graph Model 20:469

    Article  CAS  Google Scholar 

  5. Renner S, Schneider G (2004) J Med Chem 47:4653

    Article  CAS  Google Scholar 

  6. Putta S, Lemmen C, Beroza P, Greene J (2002) J Chem Inf Comput Sci 42:1230

    Article  CAS  Google Scholar 

  7. Greene J, Kahn S, Svoj H, Sprague P, Teig S (1994) J Chem Inf Comput 34:1297

    Article  CAS  Google Scholar 

  8. MOE , Molecular Operating Environment, Chemical Computing Group

  9. Lemmen C, Lengauer T, Klebe G (1998) J Med Chem 41:4502

    Article  CAS  Google Scholar 

  10. Putta S, Eksterowicz J, Lemmen C, Stanton R (2003) J Chem Inf Comput Sci 43:1623

    Article  CAS  Google Scholar 

  11. Warren G, Webster Andrews C, Capelli A-M, Clarke B, LaLonde J, Lambert M, Lindvall M, Nevins N, Semus S, Senger S, Tedesco G, Wall I, Woolven J, Peishoof C, Head M (2005) J Med Chem ASAP http://dxdoiorg/101021/jm050362n

  12. Klon AE, Glick M, Davies JW (2004) J Chem Inf Comput Sci 44:2216

    Article  CAS  Google Scholar 

  13. Klon AE, Glick M, Davies JW (2004) J Med Chem 47:4356

    Article  CAS  Google Scholar 

  14. Klon AE, Glick M, Thoma M, Acklin P, Davies JW (2004) J Med Chem 47:2743

    Article  CAS  Google Scholar 

  15. Springer C, Adalsteinsson H, Young MM, Kegelmeyer PW, Roe DC (2005) J Med Chem 48:6821

    Article  CAS  Google Scholar 

  16. Putta S, Landrum GA, Penzotti JE (2005) J Med Chem 48:3313

    Article  CAS  Google Scholar 

  17. Smellie A, Stanton R, Henne R, Teig S (2003) J Comput Chem 24:10

    Article  CAS  Google Scholar 

  18. Webb A (2002) Statistical pattern recognition. John Wiley & Sons, Hoboken

    Google Scholar 

  19. Mitchell T (1997) Machine learning. McGraw-Hill, New York

    Google Scholar 

  20. Dietterich TG (1997) AI Mag 18:97

    Google Scholar 

  21. Svetnik V, Liaw A, Tong C, Culberson JC, Sheridan RP, Feuston BP (2003) J Chem Inf Comput Sci 43:1947

    Article  CAS  Google Scholar 

  22. Landrum GA, Penzotti JE, Putta S (2004) Mat Res Soc Symp Proc 804:JJ115

    Google Scholar 

  23. Breiman L (1996) Machine Learning 24:123

    Google Scholar 

  24. Fayyad UM, Irani KB (1992) Machine Learning 8:87

    Google Scholar 

  25. Fayyad UM, Irani KB (1993) Multi-interval discretization of continuous-valued attributes for classification learning. 13th International Joint Conference on Artificial Intelligence, Morgan-Kaufmann, pp 1022–1027

  26. Out-of-Bag Estimation, UC Berkeley Department of Statistics, ftp://ftpstatberkeleyedu/pub/users/breiman/OOBestimationpsZ

  27. Bender A, Glen RC (2005) J Chem Inf Model 45:1369

    Article  CAS  Google Scholar 

  28. Norbury C, Nurse P (1992) Annu Rev Biochem 61:441

    Article  CAS  Google Scholar 

  29. Sherr CJ (1996) Science 274:1672

    Article  CAS  Google Scholar 

  30. Davis ST, Benson BG, Bramson HN, Chapman DE, Dickerson SH, Dold KM, Eberwein DJ, Edelstein M, Frye SV, Gampe RT Jr, Griffin RJ, Harris PA, Hassell AM, Holmes WD, Hunter RN, Knick VB, Lackey K, Lovejoy B, Luzzio MJ, Murray D, Parker P, Rocque WJ, Shewchuk L, Veal JM, Walker DH, Kuyper LF (2001) Science 291:134

    Article  CAS  Google Scholar 

  31. Anderson M, Beattie JF, Breault GA, Breed J, Byth KF, Culshaw JD, Ellston RP, Green S, Minshull CA, Norman RA, Pauptit RA, Stanway J, Thomas AP, Jewsbury PJ (2003) Bioorg Med Chem Lett 13:3021

    Article  CAS  Google Scholar 

  32. Beattie JF, Breault GA, Ellston RP, Green S, Jewsbury PJ, Midgley CJ, Naven RT, Minshull CA, Pauptit RA, Tucker JA, Pease JE (2003) Bioorg Med Chem Lett 13:2955

    Article  CAS  Google Scholar 

  33. Bradley EK, Miller JL, Saiah E, Grootenhuis PD (2003) J Med Chem 46:4360

    Article  CAS  Google Scholar 

  34. Landrum GA, Penzotti JE, Putta S (2004) eChemInfo 2004

  35. Bramson HN, Corona J, Davis ST, Dickerson SH, Edelstein M, Frye SV, Gampe RT Jr, Harris PA, Hassell A, Holmes WD, Hunter RN, Lackey KE, Lovejoy B, Luzzio MJ, Montana V, Rocque WJ, Rusnak D, Shewchuk L, Veal JM, Walker DH, Kuyper LF (2001) J Med Chem 44:4339

    Article  CAS  Google Scholar 

  36. Breault GA, Ellston RP, Green S, James SR, Jewsbury PJ, Midgley CJ, Pauptit RA, Minshull CA, Tucker JA, Pease JE (2003) Bioorg Med Chem Lett 13:2961

    Article  CAS  Google Scholar 

  37. Gozlan H, In Olivier B, van Wijngaarden I, Soudijn W (eds) (1997) Serotonin receptors and their ligands, Elsevier, Amsterdam

  38. Hert J, Willett P, Wilton DJ, Acklin P, Azzaoui K, Jacoby E, Schuffenhauer A (2004) J Chem Inf Comput Sci 44:1177

    Article  CAS  Google Scholar 

  39. Bionet Screening Compounds Database, Key Organics Limited, http://wwwkeyorganicsltduk/screeninhtm

  40. Clark RD, Miller AB, Berger J, Repke DB, Weinhardt KK, Kowalczyk BA, Eglen RM, Bonhaus DW, Lee CH, Michel AD et al (1993) J Med Chem 36:2645

    Article  CAS  Google Scholar 

  41. Hibert MF, Hoffmann R, Miller RC, Carr AA (1990) J Med Chem 33:1594

    Article  CAS  Google Scholar 

  42. de Gasparo M, Catt KJ, Inagami T, Wright JW, Unger T (2000) Pharmacol Rev 52:415

    Google Scholar 

  43. Hagaman JR, Moyer JS, Bachman ES, Sibony M, Magyar PL, Welch JE, Smithies O, Krege JH, O’Brien DA (1998) Proc Natl Acad Sci USA 95:2552

    Article  CAS  Google Scholar 

  44. Kessler SP, deS Senanayake P, Scheidemantel TS, Gomos JB, Rowe TM, Sen GC (2003) J Biol Chem 278:21105

    Article  CAS  Google Scholar 

  45. Fink C (1996) Exp Opin Ther Pat 6:1147

    CAS  Google Scholar 

  46. Sutherland JJ, O’Brien LA, Weaver DF (2003) J Chem Inf Comput Sci 43:1906

    Article  CAS  Google Scholar 

  47. Cody V, Galitsky N, Luft JR, Pangborn W, Blakley RL, Gangjee A (1998) Anticancer Drug Des 13:307

    CAS  Google Scholar 

  48. Cody V, Luft JR, Pangborn W, Gangjee A, Queener SF (2004) Acta Crystallogr D Biol Crystallogr 60:646–55

    Article  Google Scholar 

  49. Klon AE, Heroux A, Ross LJ, Pathak V, Johnson CA, Piper JR, Borhani DW (2002) J Mol Biol 320:677–93

    Article  CAS  Google Scholar 

  50. Stahl M, Rarey M, Klebe G (2001) In: Lengauer T (ed) Bioinformatics: from genomes to drugs, VCH, Weinheim, pp 137–170

  51. Brandstetter H, Turk D, Hoeffken HW, Grosse D, Sturzebecher J, Martin PD, Edwards BF, Bode W (1992) J Mol Biol 226:1085

    Article  CAS  Google Scholar 

  52. St Charles R, Matthews JH, Zhang E, Tulinsky A (1999) J Med Chem 42:1376

    Article  Google Scholar 

  53. Engh RA, Brandstetter H, Sucher G, Eichinger A, Baumann U, Bode W, Huber R, Poll T, Rudolph R, von der Saal W (1996) Structure 4:1353

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Erin Bradley (Sunesis Inc.) for providing the aligned CDK2 crystal structures and Christian Lemmen (BioSolveIT Gmbh) for providing the ACE and thrombin datasets.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory A. Landrum.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landrum, G.A., Penzotti, J.E. & Putta, S. Feature-map vectors: a new class of informative descriptors for computational drug discovery. J Comput Aided Mol Des 20, 751–762 (2006). https://doi.org/10.1007/s10822-006-9085-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-006-9085-8

Keywords

Navigation