Skip to main content
Log in

Modeling chemical reactions for drug design

  • Original Paper
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Chemical reactions are involved at many stages of the drug design process. This starts with the analysis of biochemical pathways that are controlled by enzymes that might be downregulated in certain diseases. In the lead discovery and lead optimization process compounds have to be synthesized in order to test them for their biological activity. And finally, the metabolism of a drug has to be established. A better understanding of chemical reactions could strongly help in making the drug design process more efficient. We have developed methods for quantifying the concepts an organic chemist is using in rationalizing reaction mechanisms. These methods allow a comprehensive modeling of chemical reactivity and thus are applicable to a wide variety of chemical reactions, from gas phase reactions to biochemical pathways. They are empirical in nature and therefore allow the rapid processing of large sets of structures and reactions. We will show here how methods have been developed for the prediction of acidity values and of the regioselectivity in organic reactions, for designing the synthesis of organic molecules and of combinatorial libraries, and for furthering our understanding of enzyme-catalyzed reactions and of the metabolism of drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5
Fig 6
Fig 7
Fig 8
Fig 9
Fig 10
Fig 11
Fig 12
Fig 13
Fig 14
Fig 15
Fig 16
Fig 17
Fig 18
Fig 19
Fig 20
Fig 21
Fig 22
Fig 23
Fig 24

Similar content being viewed by others

References

  1. Gasteiger J (ed) (2003) Handbook of chemoinformatics—from data to knowledge. Wiley-VCH, Weinheim, pp 1870, ISBN 3-527-3068

  2. Gasteiger J, Engel T (eds) (2003) Chemoinformatics—a textbook. Wiley-VCH, Weinheim, pp 650, ISBN 3-527-30681

  3. Gasteiger J (2003) In: Gasteiger J, Engel T (eds) Chemoinformatics—a textbook. Wiley-VCH, Weinheim, pp 169–202

  4. Gasteiger J, Marsili M (1980) Tetrahedron 36:3219

    Article  CAS  Google Scholar 

  5. Gasteiger J, Saller H (1985) Angew Chem 97:699; (1985) Angew Chem Int Ed Engl 24:687

  6. Kleinöder T (2005) Ph.D. thesis, University of Erlangen-Nuremberg

  7. Hutchings MG, Gasteiger J (1983) Tetrahedron Lett 24:2541

  8. Gasteiger J, Hutchings MG (1984) J Chem Soc Perkin 2:559

    Google Scholar 

  9. Gasteiger J, Hutchings MG (1984) J Am Chem Soc 106:6489

    Article  CAS  Google Scholar 

  10. Hutchings MG, Gasteiger J (1986) J Chem Soc Perkin 2:447

    Google Scholar 

  11. Hutchings MG, Gasteiger J (1986) J Chem Soc Perkin 2:455

    Google Scholar 

  12. Zhang J, Kleinöder T, Gasteiger J (2006) J Chem Inf Model 46:2256

    Article  CAS  Google Scholar 

  13. (a) Mayr H, Patz M (1994) Angew Chem 106:990; (1994) Angew Chem Int Ed Engl 33:938 (b) Minegishi S, Mayr H (2003) J Am Chem Soc 125:286

  14. Gasteiger J (2003) Mini Rev Med Chem 3:789

    Article  CAS  Google Scholar 

  15. Gasteiger J (2006) J Med Chem 49:6429

    Article  CAS  Google Scholar 

  16. ADRIANA.Code; Molecular networks. GmbH, Erlangen Germany; info@molecular-networks.com; http://www.molecular-networks.com (accessed Nov 2006)

  17. An extensive list of references on the application of structure-coding methods to problems in drug design can be obtained at http://www2.chemie.uni-erlangen.de/publications/

  18. (a) Michal G (1993) Biochemical pathways wall chart. Boehringer Mannheim (now Roche), Mannheim, Germany, www.expasy.org/tools/pathways (accessed Apr 2006) (b) Michal G (1999) Biochemical pathways biochemistry atlas. Spektrum Akademischer Verlag, Heidelberg, Germany

  19. Reitz M, Sacher O, Tarkhov A, Trümbach D, Gasteiger J (2004) Org Biomol Chem 2:3226

    Article  CAS  Google Scholar 

  20. Biopath can be accessed at http://www.molecular-network.com/biopath

  21. C@ROL. Molecular networks. GmbH, Erlangen, Germany. info@molecular-networks.com, http://www.molecular-networks.com (accessed Nov. 2006)

  22. Sadowski J, Gasteiger J, Klebe G (1994) J Chem Inf Comput Sci 34:1000

    Article  CAS  Google Scholar 

  23. CORINA. Molecular networks. GmbH: Erlangen, Germany. info@molecular-networks.com, http://www.molecular-networks.com. CORINA can be tested on the internet at http://www2.chemie.uni-erlangen.de/software/corina/free-struct.html (accessed Nov. 2006)

  24. Renner S, Schwab CH, Gasteiger J, Schneider G (2006) J Chem Inf Model 46:2324

    Article  CAS  Google Scholar 

  25. ROTATE. Molecular networks. GmbH, Erlangen Germany, info@molecular-networks.com; http://www.molecular-networks.com (accessed Nov. 2006)

  26. Goto S, Okuno Y, Hattori M, Nishioka T, Kanehisa M (2002) Nucl Acids Res 30:402

    Article  CAS  Google Scholar 

  27. BioCyc Database collection. http://biocyc.org (accessed Apr 2006)

  28. (a) Pauling L (1946) Molecular architecture and biological reactions. Chem Eng News 24:1375; (b) Pauling L (1948) The nature of forces between large molecules of biological interest. Nature 161:707

    Google Scholar 

  29. Reitz M, von Homeyer A, Gasteiger J (2006) J Chem Inf Model 46:2330

    Article  Google Scholar 

  30. Handschuh S, Gasteiger J (2000) J Mol Model 6:358

    Article  CAS  Google Scholar 

  31. http://www.chem.qmul.ac.uk/inbmb/enzyme/

  32. Kohonen T (1989) Self-organization and associative memory, 3rd edn. Springer, Berlin

    Google Scholar 

  33. Zupan J, Gasteiger J (1999) Neural networks in chemistry and drug design, 2nd edn. Wiley-VCH, Weinheim, pp 380, ISBN 3-527-29778-2

  34. SONNIA. Molecular networks. GmbH, Erlangen, Germany, info@molecular-networks.com (accessed Nov 2006)

  35. Boda K, Seidel T, Gasteiger J (2006) J Comput-Aided Mol Design (in print)

  36. Ihlenfeldt WD, Gasteiger J (1995) Angew Chem 107:2807; (1995) Angew Chem Int Ed Engl 34:2613

    Google Scholar 

  37. Pförtner M, Sitzmann M (2003) In: Gasteiger J (ed) Handbook of Chemoinformatics—From data to knowledge. Wiley-VCH, Weinheim, pp 1457–1507

  38. Hoffman B, Cho SJ, Zheng W, Wyrick S, Nichols DE, Mailman RB, Tropsha A, (1999) J Med Chem 26(42):3217

    Article  Google Scholar 

  39. Kamatani T, Kigasawa K, Hiiragi M, Ishimaru H (1971) J Chem Soc C:2632

  40. Richard P, Polniaszek, Craig R Kaufman J (1989) Am Chem Soc 111:4859

    Article  Google Scholar 

  41. Chen L, Gasteiger J (1997) J Am Chem Soc 119:4033

    Article  CAS  Google Scholar 

  42. Wagner S, Hoffmann A, Siedle B, Terfloth L, Merfort I, Gasteiger J (2006) J Med Chem 49:2241

    Article  CAS  Google Scholar 

  43. Manga N, Duffy JC, Rowe PH, Cronin MTD (2005) SAR & QSAR Environ Res 16:43

    Article  CAS  Google Scholar 

  44. Hemmer MC, Steinhauer V, Gasteiger J (1999) Vibrat Spectrosc 19:151

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Able coworkers, mentioned in the references, have embarked into the unknown domain of modeling chemical reactivity and chemical reactions. I owe much gratitude to their dedication. Our work has been funded by the Bundesministerium für Forschung und Technologie (BMFT), the Bundesministerium für Bildung und Forschung (BMBF), the Deutsche Forschungsgemeinschaft (DFG), ICI plc, UK, Pfizer, Groton, CT, USA, and Pfizer, Sandwich, UK. To all these institutions I am deeply indebted. I also thank Elsevier MDL, San Ramon, CA, USA for making their databases available to us.

Over many years I have been inspired by Yvonne Martin’s great scientific interest and her exploring questions. As a case in point: More than 15 years ago she asked me to come up with some methods for estimating synthetic accessibility. Unfortunately, it took us quite some time to find the time and the right people to achieve this goal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johann Gasteiger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gasteiger, J. Modeling chemical reactions for drug design. J Comput Aided Mol Des 21, 33–52 (2007). https://doi.org/10.1007/s10822-006-9097-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-006-9097-4

Keywords

Navigation