Skip to main content
Log in

Computational study on mechanism of G-quartet oligonucleotide T40214 selectively targeting Stat3

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The mounting evidences have shown that signal transducer and activator of transcription 3 (Stat3) is a critical target for cancer therapy. Recently, we developed a G-quartet oligonucleotide T40214 as a novel and potent Stat3 inhibitor. T40214 specifically inhibited DNA-binding activity of Stat3 and significantly suppressed the growth of many tumor xenografts in nude mice. To determine the mechanism of GQ-ODNs selectively targeting Stat3, we established a 3D model of complex T40214/p-Stat3 dimer based on experimental evidences. The binding site of T40214 within Stat3 dimer was determined by statistical docking analysis. The results indicated that T40214 strongly interacted within the region from residue E638 through E652 of Stat3 dimer. The binding model refined by Hex docking disclosed that T40214 binds to SH2 domain of Stat3 and forms H-bonds with residues Q643, Q644, N646, and N647, which are critical for the binding interaction. The 3D models also suggested that T40214 inhibits Stat3 activity through disrupting the binding interaction between Stat3 dimer and DNA duplex for transcription. Our computational studies provided a platform for future structure-based drug design of novel Stat3 inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Darnell JE (1997) Science 277:1630

    Article  CAS  Google Scholar 

  2. Bromberg J, Darnell JE (2000) Oncogene 19:2468

    Article  CAS  Google Scholar 

  3. Darnell JE (2002) Nat Rev Cancer 2:740

    Article  CAS  Google Scholar 

  4. Heinrich PC, Behrmann I, Muller-Newen G, Schaper F, Graeve L (1998) Biochem J 334(Pt 2):297

    CAS  Google Scholar 

  5. Hirano T, Ishihara K, Hibi M (2000) Oncogene 19:2548

    Article  CAS  Google Scholar 

  6. Takeda K, Akira S (2000) Cytokine Growth Factor Rev 11:199

    Article  CAS  Google Scholar 

  7. Lutticken C, Wegenka UM, Yuan J, Buschmann J, Schindler C, Ziemiecki A, Harpur AG, Wilks AF, Yasukawa K, Taga T et al (1994) Science 263:89

    Article  CAS  Google Scholar 

  8. Raz R, Durbin JE, Levy DE (1994) J Biol Chem 269:24391

    CAS  Google Scholar 

  9. Wegenka UM, Lutticken C, Buschmann J, Yuan J, Lottspeich F, Muller-Esterl W, Schindler C, Roeb E, Heinrich PC, Horn F (1994) Mol Cell Biol 14:3186

    CAS  Google Scholar 

  10. Zhong Z, Wen Z, Darnell JE Jr (1994) Science 264:95

    Article  CAS  Google Scholar 

  11. Catlett-Falcone R, Landowski TH, Oshiro MM, Turkson J, Levitzki A, Savino R, Ciliberto G, Moscinski L, Fernandez-Luna JL, Nunez G, Dalton WS, Jove R (1999) Immunity 10:105

    Article  CAS  Google Scholar 

  12. Grandis JR, Drenning SD, Chakraborty A, Zhou MY, Zeng Q, Pitt AS, Tweardy DJ (1998) J Clin Invest 102:1385

    CAS  Google Scholar 

  13. Bowman T, Garcia R, Turkson J, Jove R (2000) Oncogene 19:2474

    Article  CAS  Google Scholar 

  14. Buettner R, Mora LB, Jove R (2002) Clin Cancer Res 8:945

    CAS  Google Scholar 

  15. Silvennoinen O, Schindler C, Schlessinger J, Levy DE (1993) Science 261:1736

    Article  CAS  Google Scholar 

  16. Darnell JE Jr, Kerr IM, Stark GR (1994) Science 264:1415

    Article  CAS  Google Scholar 

  17. Levy DE, Darnell JE Jr (2002) Nat Rev Mol Cell Biol 3:651

    Article  CAS  Google Scholar 

  18. Becker S, Groner B, Muller CW (1998) Nature 394:145

    Article  CAS  Google Scholar 

  19. Chen X, Vinkemeier U, Zhao Y, Jeruzalmi D, Darnell JE Jr, Kuriyan J (1998) Cell 93:827

    Article  CAS  Google Scholar 

  20. Xu X, Sun YL, Hoey T (1996) Science 273:794

    Article  CAS  Google Scholar 

  21. Horvath CM, Wen Z, Darnell JE Jr (1995) Genes Dev 9:984

    Article  CAS  Google Scholar 

  22. Shuai K, Horvath CM, Huang LH, Qureshi SA, Cowburn D, Darnell JE Jr (1994) Cell 76:821

    Article  CAS  Google Scholar 

  23. Jing N, Tweardy DJ (2005) Anticancer Drugs 16:601

    Article  CAS  Google Scholar 

  24. Jing N, Li Y, Xu X, Sha W, Li P, Feng L, Tweardy DJ (2003) DNA Cell Biol 22:685

    Article  CAS  Google Scholar 

  25. Weerasinghe P, Garcia GE, Zhu Q, Yuan P, Feng L, Mao L, Jing N (2007) Int J Oncol 31:129

    CAS  Google Scholar 

  26. Jing N, Zhu Q, Yuan P, Li Y, Mao L, Tweardy DJ (2006) Mol Cancer Ther 5:279

    Article  CAS  Google Scholar 

  27. Jing N, Li Y, Xiong W, Sha W, Jing L, Tweardy DJ (2004) Cancer Res 64:6603

    Article  CAS  Google Scholar 

  28. Grandis JR, Drenning SD, Zeng Q, Watkins SC, Melhem MF, Endo S, Johnson DE, Huang L, He Y, Kim JD (2000) Proc Natl Acad Sci USA 97:4227

    Article  CAS  Google Scholar 

  29. Ramana CV, Grammatikakis N, Chernov M, Nguyen H, Goh KC, Williams BR, Stark GR (2000) Embo J 19:263

    Article  CAS  Google Scholar 

  30. Yu H, Jove R (2004) Nat Rev Cancer 4:97

    Article  CAS  Google Scholar 

  31. Jing N, Hogan ME (1998) J Biol Chem 273:34992

    Article  CAS  Google Scholar 

  32. Pearlmann DA, Case DA, Caldwell JW, Ross WS, Cheatham TE, III DeBolt S, Ferguson D, Seibel G, Kollman P (1995) Comp Phys Commun 91:1

    Article  Google Scholar 

  33. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28:235

    Article  CAS  Google Scholar 

  34. Berman HM, Olson WK, Beveridge DL, Westbrook J, Gelbin A, Demeny T, Hsieh SH, Srinivasan AR, Schneider B (1992) Biophys J 63:751

    CAS  Google Scholar 

  35. Ritchie DW, Kemp GJ (2000) Proteins 39:178

    Article  CAS  Google Scholar 

  36. Boeckmann B, Bairoch A, Apweiler R, Blatter MC, Estreicher A, Gasteiger E, Martin MJ, Michoud K, O’Donovan C, Phan I, Pilbout S, Schneider M (2003) Nucleic Acids Res 31:365

    Article  CAS  Google Scholar 

  37. Thompson JD, Higgins DG, Gibson TJ (1994) Nucleic Acids Res 22:4673

    Article  CAS  Google Scholar 

  38. Neculai D, Neculai AM, Verrier S, Straub K, Klumpp K, Pfitzner E, Becker S (2005) J Biol Chem 280:40782

    Article  CAS  Google Scholar 

  39. Mao X, Ren Z, Parker GN, Sondermann H, Pastorello MA, Wang W, McMurray JS, Demeler B, Darnell JE Jr, Chen X (2005) Mol Cell 17:761

    Article  CAS  Google Scholar 

  40. Soler-Lopez M, Petosa C, Fukuzawa M, Ravelli R, Williams JG, Muller CW (2004) Mol Cell 13:791

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Yidong Li, who contributed to this study by providing the EMSA results. This project was supported by the following grants: CA104035 (NIH) and competitive award from Prostate Cancer Foundation. In addition, Dr. Zhu received support through NIH training grant T32 DK60445.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naijie Jing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Q., Jing, N. Computational study on mechanism of G-quartet oligonucleotide T40214 selectively targeting Stat3. J Comput Aided Mol Des 21, 641–648 (2007). https://doi.org/10.1007/s10822-007-9147-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-007-9147-6

Keywords

Navigation