Skip to main content

Advertisement

Log in

A ligand’s-eye view of protein binding

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Docking tools created for structure-based design and virtual screening have also been used to automate ligand alignment for comparative molecular field analysis (CoMFA). Models based on such alignments have been compared with those obtained based solely on shared ligand substructures, but such comparisons have generally failed to distinguish between conformational specification (alignment in the internal coordinate space) and embedding in a shared external frame of reference (Cartesian alignment). Here, large sets of inhibitors were docked into two cyclooxygenase and two reverse transcriptase crystal structures, and the poses generated were evaluated in terms of the CoMFA models they produced. Realigning the conformers obtained by docking by rigid-body rotation and translation to overlay their common substructures improved model statistics and interpretability, provided the protein structure used for docking was reasonably appropriate to the ligands being considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. For the systems considered here and other similar ones, CoMFA and CoMSIA generally yield quite similar results. In the interests of simplicity, only CoMFA results are described here, but similar conclusions should hold true for CoMSIA.

  2. Their compound 18.

  3. The Research Collaboratory for Structural Bioinformatics (http://www.rcsb.org/pdb).

  4. The FCC lattice is generated by nesting one cubic lattice inside another, offset by a half step along each axis. The TAILOR AUTO_REGION LATTICE and TAILOR AUTO_REGION STEP_SIZE commands controls the relevant settings in SYBYL.

  5. Here, “regression weight” is defined as the product of the regression coefficient and the standard deviation of the field at each lattice point.

References

  1. Cramer RD III, Patterson DE, Bunce JD (1988) J Am Chem Soc 110:5959–5967

    Article  CAS  Google Scholar 

  2. Klebe G, Abraham U, Mietzner T (1994) J Med Chem 37:4130–4146

    Article  CAS  Google Scholar 

  3. Cruciani G, Crivori P, Carrupt P-A, Testa B (2000) J Mol Struct 503:17–30

    CAS  Google Scholar 

  4. Cramer RD (2003) J Med Chem 46:374–388

    Article  CAS  Google Scholar 

  5. Beusen DD, Marshall GR (1999) In: Güner O (ed) Pharmacophore perception, development, and use in drug design. International University Line, pp 23–46

  6. Perola E, Charifson PS (2004) J Med Chem 47:2499–2510

    Article  CAS  Google Scholar 

  7. Boström J, Norrby P-O, Liljefors (1998) J Comput Aided Mol Des 12:383–396

  8. Boström J (2001) J Comput Aided Mol Design 15:1137–1152

    Article  Google Scholar 

  9. Rault S, Bureau R, Pilo JC, Robba M (1992) J Comput Aided Mol Des 6:553–568

    Article  CAS  Google Scholar 

  10. Calder JA, Wyatt JA, Frenkel DA, Casida JE (1993) J Comput Aided Mol Des 7:45–60

    Article  CAS  Google Scholar 

  11. Langer T, Hoffmann RD (1998) J Chem Inf Comput Sci 38:325–330

    Article  CAS  Google Scholar 

  12. Myers AM, Charifson PS, Owens CE, Kula NS, McPhail AT, Baldessarini RJ, Booth RG, Wyrick SD (1994) J Med Chem 37:4109–4117

    Article  CAS  Google Scholar 

  13. Clark RD, Leonard JM, Strizhev A (1999) In: Güner O (ed) Pharmacophore perception, development, and use in drug design, International University Line, p 151–169

  14. Muegge I, Podlogar BL (2001) Quant Struct Act Relat 20:215–222

    Article  CAS  Google Scholar 

  15. Datar PA, Coutinho EC (2004) J Mol Graph Graph Model 23:239–251

    Article  CAS  Google Scholar 

  16. Thilagavathi R, Chakraborti AK (2005) Internet Elect J Mol Des 4:603–612

    CAS  Google Scholar 

  17. Gohlke H, Klebe G (2002) J Med Chem 45:4153–4170

    Article  CAS  Google Scholar 

  18. Kurumbail RG, Steven AM, Gierse JK, McDonald JJ, Stegeman RA, Pak JY, Gildehaus D, Miyashiro JM, Penning TD, Seibert K, Isakson PC, Stallings WC (1996) Nature 384:644–648

    Article  CAS  Google Scholar 

  19. Marot C, Chavatte P, Lesieur D (2000) Quant Struct-Act Relat 19:127–134

    Article  CAS  Google Scholar 

  20. Desiraju GR, Sarma JARP, Raveendra D, Gopolakrishnan B, Thilagavathi R, Sobhia ME, Subramanya HS (2001) J Phys Org Chem 14:481–487

    Article  CAS  Google Scholar 

  21. Chakraborti AK, Thilagavathi R (2003) Bioorg Med Chem 11:3989–3996

    Article  CAS  Google Scholar 

  22. Kauffmann GW, Jurs PC (2001) J Chem Inf Comput Sci 41:1553–1560

    Article  Google Scholar 

  23. Gaudio AC, Montanari A (2002) J Comput Aided Mol Des 16:287–295

    Article  CAS  Google Scholar 

  24. Rao SN, Stockfish TP (2003) J Chem Inf Comput Sci 43:1614–1622

    Article  CAS  Google Scholar 

  25. Liu HX, Zhang RS, Yao XJ, Liu MC, Hu ZD, Fan BT (2004) J Comput Aided Mol Des 18:389–399

    Article  CAS  Google Scholar 

  26. Baurin N, Mozziconacci J-C, Arnooult E, Chavatte P, Marot C, Morin-Allory L (2004) J Chem Inf Comput Sci 44:276–285

    Article  CAS  Google Scholar 

  27. Prasanna S, Manivannan E, Chaturvedi SC (2004) QSAR Comb Sci 23:621–628

    Article  CAS  Google Scholar 

  28. Chavatte P, Yous S, Marot C, Baurin N, Lesieur D (2001) J Med Chem 44:3223–3230

    Article  CAS  Google Scholar 

  29. Clark RD (2003) J Comput Aided Mol Des 17:265–275

    Article  CAS  Google Scholar 

  30. Clark RD, Fox PC (2004) J Comput Aided Mol Des 18:563–576

    Article  CAS  Google Scholar 

  31. De Clerq E (2004) Chem Biodivers 1:44–64

    Article  Google Scholar 

  32. De Corte BL (2005) J Med Chem 48:1689–1696

    Article  Google Scholar 

  33. Kohlstaedt LA, Wang J, Friedman JM, Rice PA, Steitz TA (1992) Science 256:1783–1790

    Article  CAS  Google Scholar 

  34. Tanaka H, Takashima H, Ubasawa M, Sekiya K, Nitta I, Baba M, Shigeta S, Walker RT, De Clerq E, Miyasaka T (1992) J Med Chem 35:337–345

    Article  CAS  Google Scholar 

  35. Tanaka H, Baba M, Hayakawa H, Sakamaki T, Miyasaka T, Ubasawa M, Takashima H, Sekiya K, Nitta I, Shigeta S, Walker RT, Balzarini J, De Clerq E, (1991) J Med Chem 34:349–357

    Article  CAS  Google Scholar 

  36. Ren J, Esnouf R, Garman E, Somers D, Ross C, Kirby I, Keeling J, Darby G, Jones Y, Stuart D, Stammers D (1995) Nat Struct Biol 2:292–302

    Article  Google Scholar 

  37. Hopkins AL, Ren J, Esnouf RM, Willcox BE, Jones EY, Ross C, Miyasaka T, Walker RT, Tanaka H, Stammers DK, Stuart DI (1996) J Med Chem 39:1589–1600

    Article  CAS  Google Scholar 

  38. Hannongbua S, Nivesanond K, Lawtrakul L, Pungpo P, Wolschann P (2001) J Chem Inf Comput Sci 41:848–855

    Article  CAS  Google Scholar 

  39. Medina-Franco JL, Rodríguez-Morales S, Juárez-Gordiano C, Hernández-Campos A, Castillo R (2004) J Comput Aided Mol Des 18:345–360

    Article  CAS  Google Scholar 

  40. Zhou Z, Madura JD (2004) J Chem Inf Comput Sci 44:2167–2178

    Article  CAS  Google Scholar 

  41. Jalali-Heravi M, Parastar F (2000) J Chem Inf Comput Sci 40:147–154

    Article  CAS  Google Scholar 

  42. Alves CN, Pinheiro JC, Camargo AJ, Ferreira MMC, da Silva ABF (2000) J Mol Struct 530:39–47

    CAS  Google Scholar 

  43. Kireev DB, Chrétien JR, Grierson DS, Monneret C (1997) J Med Chem 40:4257–4264

    Article  CAS  Google Scholar 

  44. Hopkins AL, Ren J, Tanaka H, Baba M, Okamato M, Sturat DI, Stammers DK (1999) J Med Chem 42:4500–4505

    Article  CAS  Google Scholar 

  45. Luco JM, Ferretti FH (1997) J Chem Inf Comput Sci 37:392–401

    Article  CAS  Google Scholar 

  46. CONCORD® was created by RS Pearlman, A Rusinko JM Skell, R Balducci at the University of Texas, Austin TX

  47. CONCORD® is distributed exclusively by Tripos International, 1699 S. Hanley Rd., St. Louis MO 63144 USA (http://www.tripos.com)

  48. Ash S, Cline MA, Homer RW, Hurst T, Smith GB (1997) J Chem Inf Comput Sci 37:71–79

    Article  CAS  Google Scholar 

  49. SYBYL® is distributed exclusively by Tripos International, 1699 S. Hanley Rd., St. Louis MO 63144 USA (http://www.tripos.com)

  50. Gasteiger J, Marsili M (1980) Tetrahedron 36:3219–3288

    Article  CAS  Google Scholar 

  51. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28:235–242

    Article  CAS  Google Scholar 

  52. Jain AN (2003) Surflex: fully automaticflexible molecular docking using a molecularsimilarity-based search engine. J Med Chem 46:499–511

    Article  CAS  Google Scholar 

  53. Surflex-Dock™ is distributed by and by Tripos International, 1699 S. Hanley Rd., St. Louis MO 63144 USA (http://www.tripos.com); and by BioPharmics LLC, 36 Avila Road, San Mateo CA 94402 USA (http://www.biopharmics.com)

  54. Jain AN (2007) J Comput Aided Mol Des 21:281–306

    Article  CAS  Google Scholar 

  55. Cho SJ, Tropsha A (1995) J Med Chem 38:1060–1066

    Article  CAS  Google Scholar 

  56. Llorens O, Perez JJ, Palomer A, Mauleon D (2002) J Mol Graph Model 20:359–371

    Article  CAS  Google Scholar 

  57. Soliva R, Almansa C, Kalko SG, Luque FJ, Orozco M (2003) J Med Chem 46:1372–1382

    Article  CAS  Google Scholar 

  58. Clark RD, Strizhev A, Leonard JM, Blake JF, Matthew JB (2002) J Mol Graph Model 20:281–295

    Article  CAS  Google Scholar 

  59. CScore™ is distributed exclusively by Tripos International, 1699 S. Hanley Rd., St. Louis MO 63144 USA (http://www.tripos.com)

  60. Clark M, Cramer RD III (1993) Quant Struct Activity Rel 12:137–145

    Article  CAS  Google Scholar 

  61. Waller CL, Oprea TI, Giolitti A, Marshall GR (1993) J Med Chem 36:4152–4160

    Article  CAS  Google Scholar 

  62. Klebe G, Abraham U (1993) J Med Chem 36:70–80

    Article  CAS  Google Scholar 

  63. Klebe G, Mietzner T, Weber F (1994) J Comput Aided Mol Des 8:751–778

    Article  CAS  Google Scholar 

  64. Oprea TI, Waller CL, Marshall GR (1994) J Med Chem 37:2206–2215

    Article  CAS  Google Scholar 

  65. DePriest SA, Mayer D, Naylor CB, Marshall GR (1993) J Am Chem Soc 115:5372–5384

    Article  CAS  Google Scholar 

  66. Martin YC (1998) In: Kubinyi H, Folkers G, Martin YC (eds) 3D QSAR in drug design, vol 3. Kluwer Academic, Dordrecht, pp 3–23

    Chapter  Google Scholar 

  67. Kim KH (2007) J Comput Aided Mol Des 21:63–86

    Article  Google Scholar 

  68. De Jonge MR, Koymans LM, Vinkers HM, Daeyaert FF, Heeres J, Lewi PJ, Janssen PA (2005) J Med Chem 48:2176–2183

    Article  Google Scholar 

  69. Pouplana R, Lozano JJ, Pérez C, Ruiz J (2002) J Comput Aided Mol Des 16:683–709

    Article  CAS  Google Scholar 

  70. Desiraju GR, Sarma JARP, Raveendra D, Gopolakrishnan, Thilagavathi R, Sobhia ME, Subramanya HS (2001) J Phys Org Chem 14:481–487

    Article  CAS  Google Scholar 

  71. Chakraborti AK, Thilagavathi R (2003) Bioorg Med Chem 11:3989–3996

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Drs. Richard Cramer and Brian Masek of Tripos International provided helpful discussions in the work described here. Drs. Ajay Jain (UCSF) and Essam Metwally (Tripos International) have been invaluable collaborators with respect to the Surflex-Dock.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert D. Clark.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clark, R.D. A ligand’s-eye view of protein binding. J Comput Aided Mol Des 22, 507–521 (2008). https://doi.org/10.1007/s10822-008-9177-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-008-9177-8

Keywords

Navigation