Skip to main content

Advertisement

Log in

Quantitative structure–activity relationship studies of mushroom tyrosinase inhibitors

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Here, we report our results from quantitative structure–activity relationship studies on tyrosinase inhibitors. Interactions between benzoic acid derivatives and tyrosinase active sites were also studied using a molecular docking method. These studies indicated that one possible mechanism for the interaction between benzoic acid derivatives and the tyrosinase active site is the formation of a hydrogen-bond between the hydroxyl (aOH) and carbonyl oxygen atoms of Tyr98, which stabilized the position of Tyr98 and prevented Tyr98 from participating in the interaction between tyrosinase and ORF378. Tyrosinase, also known as phenoloxidase, is a key enzyme in animals, plants and insects that is responsible for catalyzing the hydroxylation of tyrosine into o-diphenols and the oxidation of o-diphenols into o-quinones. In the present study, the bioactivities of 48 derivatives of benzaldehyde, benzoic acid, and cinnamic acid compounds were used to construct three-dimensional quantitative structure–activity relationship (3D-QSAR) models using comparative molecular field (CoMFA) and comparative molecular similarity indices (CoMSIA) analyses. After superimposition using common substructure-based alignments, robust and predictive 3D-QSAR models were obtained from CoMFA (q 2 = 0.855, r 2 = 0.978) and CoMSIA (q 2 = 0.841, r 2 = 0.946), with 6 optimum components. Chemical descriptors, including electronic (Hammett σ), hydrophobic (π), and steric (MR) parameters, hydrogen bond acceptor (H-acc), and indicator variable (I), were used to construct a 2D-QSAR model. The results of this QSAR indicated that π, MR, and H-acc account for 34.9, 31.6, and 26.7% of the calculated biological variance, respectively. The molecular interactions between ligand and target were studied using a flexible docking method (FlexX). The best scored candidates were docked flexibly, and the interaction between the benzoic acid derivatives and the tyrosinase active site was elucidated in detail. We believe that the QSAR models built here provide important information necessary for the design of novel tyrosinase inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Literature Cited

  1. Sánchez-Ferrer A, Rodríguez-López JN, García-Cánovas F, García-Carmona F (1995) Biochim Biophys Acta 1247:1

    Google Scholar 

  2. Chase MR, Raina K, Bruno J, Sugumaran M (2000) Insect Biochem Molec 30:953

    Article  CAS  Google Scholar 

  3. Chen QX, Liu XD, Huang H (2003) Biochemistry-Moscow 68:644

    Article  CAS  Google Scholar 

  4. Xu Y, Stokes AH, Freeman WM, Kumer SC, Vogt BA, Vrana KET (1997) Mol Brain Res 45:159

    Article  CAS  Google Scholar 

  5. Oetting WS (2000) Pigm Cell Res 13:320

    Article  CAS  Google Scholar 

  6. Ashida M, Brey P (1995) Proc Natl Acad Sci USA 92:10698

    Article  CAS  Google Scholar 

  7. Fitzpatrick TB, Eisen AZ, Wolff K, Freedberg IM, Austen KF (1983) Dermatology in general medicine. New York, NY

  8. Maeda K, Fukuda M (1991) J Soc Cosmet Chem 42:361

    CAS  Google Scholar 

  9. Wang SD, Luo WC, Gao XX (2004) Agr Sci China 3:923

    Google Scholar 

  10. Wang SD, Luo WC, Xu SJ, Ding Q (2005) Pestic Biochem Phys 82:52

    Article  CAS  Google Scholar 

  11. Wang SD, Luo WC, Xiao T, Xue CB (2005) Biopestic Int 1:82

    Google Scholar 

  12. Wang XY, Liu CY, Zhang JD, Luo WC (2005) Insect Sci 12:231

    Article  Google Scholar 

  13. Xue CB, Luo WC, Chen QX, Wang Q, Ke LN (2006) Insect Sci 13:251

    Article  CAS  Google Scholar 

  14. Xue CB, Zhang L, Luo WC, Xie XY, Jiang L, Xiao T (2007) Bioorg Med Chem 15:2006

    Article  CAS  Google Scholar 

  15. Cramer RD III, Patterson DE, Bunce JD (1988) J Amer Chem Soc 110:5959

    Article  CAS  Google Scholar 

  16. Klebe G, Abraham U, Mietzner T (1994) J Med Chem 37:4130

    Article  CAS  Google Scholar 

  17. Chen QX, Song KK, Wang Q, Huang H (2003) J Enzym Inhib Med Ch 18:491

    Article  CAS  Google Scholar 

  18. Huang H, Liu XD, Chen QX (2003) J Xiamen Univer 42:97

    CAS  Google Scholar 

  19. Huang XH, Chen QX, Wang Q, Song KK, Wang J, Li S, Guan X (2006) Food Chem 94:1

    Article  CAS  Google Scholar 

  20. Zhang JP, Chen QX, Song KK, Xie JJ (2006) Food Chem 95:579

    Article  CAS  Google Scholar 

  21. Chen QX, Song KK, Qiu L, Liu XD, Huang H, Guo HY (2005) Food Chem 91:269

    Article  CAS  Google Scholar 

  22. Shi Y, Chen QX, Wang Q, Song KK, Qiu L (2005) Food Chem 92:707

    Article  CAS  Google Scholar 

  23. Wold S, Albano C, Dunn WJ III, Edlund U, Esbensen K, Geladi P, Hellberg S, Johanson E, Lindberg W, Sjostrom M (1984) NATO ASI Ser Ser C 138:17

    CAS  Google Scholar 

  24. Wold S, Rhue A, Wold H, Dunn WJI (1984) SIAM J Sci Stat Comput 5:735

    Article  Google Scholar 

  25. Clark M, Cramer RD III (1993) Quant Struct-Act Relat 12:137

    Article  CAS  Google Scholar 

  26. Li RL (2004) In structure activity relationships of drug. The Medicine Science and Technology Press, Beijing, BJ

    Google Scholar 

  27. Rarey M, Kramer B, Lengauer T, Kleb G (1996) J Mol Biol 261:470

    Article  CAS  Google Scholar 

  28. Rarey M, Kramer B, Lengauer T (1997) J Comput Aid Mol Des 11:369

    Article  CAS  Google Scholar 

  29. Yang GF, Jiang XH, Yang HZ (2002) Pest Manag Sci 58:1063

    Article  CAS  Google Scholar 

  30. Yang GF, Liu HY, Yang HZ (1999) Pestic Sci 55:1143

    Article  CAS  Google Scholar 

  31. Yang GF, Jiang XH, Ding Y, Yang HZ (2002) Acta Chim Sinica 60:134

    CAS  Google Scholar 

  32. Yang GF, Huang XQ (2006) Curr Pharm Design 12:4601

    Article  CAS  Google Scholar 

  33. Wei DG, Yang GF, Wan J, Zhan CG (2005) J Agric Food Chem 53:1604

    Article  CAS  Google Scholar 

  34. Li W, Kubo I (2004) Bioorg Med Chem 12:701

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The present investigation was financially supported by the National Natural Science Foundation of P. R. China (Grant NO. 30571237) and Research Fund for the Doctoral Program of Higher Education of China (NO. 20070434006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-Chun Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xue, CB., Luo, WC., Ding, Q. et al. Quantitative structure–activity relationship studies of mushroom tyrosinase inhibitors. J Comput Aided Mol Des 22, 299–309 (2008). https://doi.org/10.1007/s10822-008-9187-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-008-9187-6

Keywords

Navigation