Skip to main content
Log in

Automatic QSAR modeling of ADME properties: blood–brain barrier penetration and aqueous solubility

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

In this article, we present an automatic model generation process for building QSAR models using Gaussian Processes, a powerful machine learning modeling method. We describe the stages of the process that ensure models are built and validated within a rigorous framework: descriptor calculation, splitting data into training, validation and test sets, descriptor filtering, application of modeling techniques and selection of the best model. We apply this automatic process to data sets of blood–brain barrier penetration and aqueous solubility and compare the resulting automatically generated models with ‘manually’ built models using external test sets. The results demonstrate the effectiveness of the automatic model generation process for two types of data sets commonly encountered in building ADME QSAR models, a small set of in vivo data and a large set of physico-chemical data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Auto-ModelerTM is a trademark of Galapagos NV and/or its affiliates.

References

  1. Cartmell J, Enoch S, Krstajic D, Leahy DE (2005) J Comput Aid Mol Des 19:821

    Article  CAS  Google Scholar 

  2. Zhang S, Golbraikh A, Oloff S, Kohn H, Tropsha A (2006) J Chem Inf Model 46:1984

    Article  CAS  Google Scholar 

  3. Winkler DA, Burden FR (2004) J Mol Graph Model 22:499

    Article  CAS  Google Scholar 

  4. Tetko IV (2002) J Chem Inf Comput Sci 42:717

    Article  CAS  Google Scholar 

  5. Burden FR (2001) J Chem Inf Comput Sci 41:830

    Article  CAS  Google Scholar 

  6. Obrezanova O, Csányi G, Gola JMR, Segall MD (2007) J Chem Inf Model 47:1847

    Article  CAS  Google Scholar 

  7. Schwaighofer A, Schroeter T, Mika S, Laub J, Laak AT, Sulzle D, Ganzer U, Heinrich N, Muller KR (2007) J Chem Inf Model 47:407

    Article  CAS  Google Scholar 

  8. Daylight Chemical Information Systems, Inc., SMARTS Tutorial. Retrieved from http://www.daylight.com/dayhtml_tutorials/languages/smarts/index.html 16/10/2007

  9. Ertl P, Rhodes B, Selzer P (2000) J Med Chem 43:3714

    Article  CAS  Google Scholar 

  10. Abraham MH, McGowan JC (1987) Chromatographia 23:243

    Article  CAS  Google Scholar 

  11. Butina D (1999) J Chem Inf Comput Sci 39:747

    Article  CAS  Google Scholar 

  12. Livingstone D (1995) Data analysis for chemists. Oxford University Press, Oxford, UK

    Google Scholar 

  13. Wold S, Sjöström M, Eriksson L (1998) In: Schleyer PvR, Allinger NL, Clark T, Gasteiger J, Kollman P, Schaefer HF III, Schreiner PR (eds) The encyclopedia of computational chemistry, vol 3. Wiley, Chichester UK, pp 2006–2022

    Google Scholar 

  14. Enot D, Gautier R, Le Marouille J (2001) SAR QSAR Environ Res 12:461

    Article  CAS  Google Scholar 

  15. Tino P, Nabney IT, Williams BS, Losel J, Sun Y (2004) J Chem Inf Comput Sci 44:1647

    Article  CAS  Google Scholar 

  16. Schroeter T, Schwaighofer A, Mika S, Laak AT, Sulzle D, Ganzer U, Heinrich N, Muller KR (2007) J Comput Aided Mol Des 21:485

    Google Scholar 

  17. MacKay DJC (2003) Information theory, inference, and learning algorithms. Cambridge University Press, Cambridge, UK

    Google Scholar 

  18. Rasmussen CE, Williams CKI (2006) Gaussian Processes for machine learning. The MIT Press, Cambridge, MA

    Google Scholar 

  19. Buhman MD (2003) Radial basis functions: theory and implementations. Cambridge University Press, Cambridge, UK

    Google Scholar 

  20. Whitley DC, Ford MG, Livingstone DJ (2000) J Chem Inf Comput Sci 40:1160

    Article  CAS  Google Scholar 

  21. Clark DE (2005) In: Doherty AM (ed) Annual reports in medicinal chemistry, vol 40. Elsevier Academic Press, San Diego, CA, pp 403–415

    Chapter  Google Scholar 

  22. Butina D, Gola JRM (2003) J Chem Inf Comput Sci 43:837

    Article  CAS  Google Scholar 

  23. Abraham MH, Ibrahim A, Zhao Y, Acree WE Jr (2006) J Pharm Sci 95:2091

    Article  CAS  Google Scholar 

  24. Huuskonen J (2000) J Chem Inf Comput Sci 40:773

    Article  CAS  Google Scholar 

  25. Rose K, Hall LH, Kier LB (2002) J Chem Inf Comput Sci 42:651

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Obrezanova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Obrezanova, O., Gola, J.M.R., Champness, E.J. et al. Automatic QSAR modeling of ADME properties: blood–brain barrier penetration and aqueous solubility. J Comput Aided Mol Des 22, 431–440 (2008). https://doi.org/10.1007/s10822-008-9193-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-008-9193-8

Keywords

Navigation