Skip to main content
Log in

Neural network-based QSAR and insecticide discovery: spinetoram

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Improvements in the efficacy and spectrum of the spinosyns, novel fermentation derived insecticide, has long been a goal within Dow AgroSciences. As large and complex fermentation products identifying specific modifications to the spinosyns likely to result in improved activity was a difficult process, since most modifications decreased the activity. A variety of approaches were investigated to identify new synthetic directions for the spinosyn chemistry including several explorations of the quantitative structure activity relationships (QSAR) of spinosyns, which initially were unsuccessful. However, application of artificial neural networks (ANN) to the spinosyn QSAR problem identified new directions for improved activity in the chemistry, which subsequent synthesis and testing confirmed. The ANN-based analogs coupled with other information on substitution effects resulting from spinosyn structure activity relationships lead to the discovery of spinetoram (XDE-175). Launched in late 2007, spinetoram provides both improved efficacy and an expanded spectrum while maintaining the exceptional environmental and toxicological profile already established for the spinosyn chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ANN:

Artificial neural network

MLR:

Multiple linear regression

SAR:

Structure activity relationships

QSAR:

Quantitative structure activity relationships

UV:

Ultraviolet

ppm:

Parts per million

LC50 :

Lethal concentration resulting in mortality in 50% of the population

References

  1. Kirst HA, Michel KH, Mynderse JS, Chio EH, Yao RC, Nakatukasa WM, Boeck LD, Occolowitz JL, Paschal JW, Deeter JB, Thompson GD (1992) In: Baker DR, Fenyes JG, Steffens JJ (eds) Synthesis and chemistry of agrochemicals III. American Chemical Society, Washington DC, pp 214–225

    Google Scholar 

  2. Orr N, Hasler J, Watson G, Mitchell J, Gustafson G, Gifford J, Geng C, Chouinard S, Cook K (2006) 11th IUPAC international congress pesticide chemistry. Kobe, Japan, Aug, 2006. Abst. S4-3, vol 1, p 27

  3. Sparks TC, Thompson GD, Larson LL, Kirst HA, Jantz OK, Worden TV, Hertlein MB, Busacca JD (1995) Proc 1995 Beltwide Cotton Conf, pp 903–907

  4. Sparks TC, Thompson GD, Kirst HA, Hertlein MB, Larson LL, Worden TV, Thibult ST (1998) J Econ Entomol 91:177–1283

    Google Scholar 

  5. Thompson GD, Dutton R, Sparks TC (2000) Pest Manag Sci 57:696

    Article  Google Scholar 

  6. Sparks TC, Thompson GD, Kirst HA, Hertlein MB, Mynderse JS, Turner JR, Worden TV (1999) In: Hall FR, Menn JJ (eds) Biopesticides: use and delivery. Humana Press, New York, pp 171–188

    Google Scholar 

  7. Thompson GD, Sparks TC (2002) In: Lankey RL, Anastas PT (eds) Advancing sustainability through green chemistry and engineering. American Chemical Society, Washington, pp 61–73

    Google Scholar 

  8. Hahn DL, Gustafson G, Waldron C, Bullard B, Jackson JD, Mitchell J (2006) J Ind Microbiol Biotechnol 33:94–104

    Article  CAS  Google Scholar 

  9. Salgado VL, Sparks TC (2005) In: Gilbert LI, Iatrou K, Gill SS (eds) Comprehensive insect molecular science, vol 6. Elsevier, New York, pp 137–173

    Google Scholar 

  10. Sheehan LS, Lill RE, Wilkinson B, Sheridan RM, Vousden WA, Kaja AL, Crouse GD, Gifford J, Graupner P, Karr L, Lewer P, Sparks TC, Leadlay PF, Waldron C, Martin CJ (2006) J Nat Prod 69:1702–1710

    Article  CAS  Google Scholar 

  11. Gaisser S, Martin CJ, Wilkinson B, Sheridan RM, Lill RE, Weston AJ, Ready SJ, Waldron C, Crouse GD, Leadlay PF, Staunton (2002) J Chem Commun, 618–619

  12. Anzeveno PB, Green FR III (2002) In: Baker DR, Fenyes JG, Lahm GP, Selby TP, Stevenson TM (eds) Synthesis and chemistry of agrochemicals VI. American Chemical Society, Washington DC, pp 262–276

    Google Scholar 

  13. Crouse GD, Sparks TC, DeAmicis CV, Kirst HA, Martynow JG, Creemer LC, Worden TV, Anzeveno PB (1999) In: Brooks GT, Roberts TR (eds) Pesticide chemistry and bioscience: the food-environment challenge. Royal Society of Chemistry, Cambridge, UK, pp 155–166

    Google Scholar 

  14. Crouse GD, Sparks TC, Schoonover J, Gifford J, Dripps J, Bruce T, Larson LL Garlich J, Hatton C, Hill RL, Worden TV, Martynow JG (2001) Pest Manag Sci 57:177

    Article  CAS  Google Scholar 

  15. Crouse GD, Dripps JE, Orr N, Sparks TC, Waldron C (2007) In: Kramer W, Schirmer U (eds) Modern crop protection compounds, vol 3. Wiley, VCH, New York, pp 1013–1031

    Google Scholar 

  16. Sparks TC, Crouse GD, Durst G (2001) Pest Manag Sci 57:896

    Article  CAS  Google Scholar 

  17. Crouse GD, Sparks TC (1998) Rev Toxicol 2:133

    CAS  Google Scholar 

  18. Creemer LC, Kirst HA, Paschal JW, Worden TV (2000) J Antibiot 53:171

    CAS  Google Scholar 

  19. Sparks TC, Crouse GD, Anzeveno PB, Martynow J, Dripps J, Gifford J (2006) 11th IUPAC international congress pesticide chemistry. Kobe, Japan, Aug, Abst. I-1-i-37A, vol 2, p 23

  20. Sparks TC, Anzeveno PB, Martynow JG, Gifford JM, Hertlein MB, Worden TV, Kirst HA (2000) Pestic Biochem Physiol 67:187

    Article  CAS  Google Scholar 

  21. Salt DW, Yildiz N, Liningstone DJ, Tinsley CJ (1992) Pestic Sci 36:161–170

    Article  CAS  Google Scholar 

  22. DeVillers J (1996) In: DeVillers J (ed) Neural networks in QSAR and drug design. Academic Press, New York, pp 1–46

    Chapter  Google Scholar 

  23. Perrone MP (1995) In: Arbib MA (ed) The handbook of brain theory and neural networks. MIT Press, Cambridge, MA, pp 126–129

    Google Scholar 

  24. Finney DJ (1971) Probit analysis, 3rd edn. Cambridge University Press, London

    Google Scholar 

  25. Chloridis A, Downard P, Dripps JE, Kaneshi K, Lee LC, Min YK, Pavan LA (2007) Spinetoram (XDE-175): a new spinosyn. In: Proceedings of the XVI international plant protection congress. Glasgow, UK, pp 44–49

  26. Fukuto TR (1976) In: Wilkinson CF (ed) Insecticide biochemistry and physiology. Plenum Press, New York, pp 397–428

    Google Scholar 

  27. Hansch C, Fujita T (eds) (1995) Classical and three-dimensional QSAR in agrochemistry. American Chemical Society, Washington DC

    Google Scholar 

  28. Nishimura N, Iwamura H, Fujita T (1990) In: Hodgson E, Kuhr RJ (eds) Safer insecticides: development and use. Marcel Dekker, New York, pp 57–101

    Google Scholar 

  29. Plummer EL (1995) In: Hansch C, Fujita T (eds) Classical and three-dimensional QSAR in agrochemistry. American Chemical Society, Washington DC, pp 240–262

    Google Scholar 

Download references

Acknowledgements

We thank Greg Durst (Eli Lilly and Co.), Dr. Anthony Hopfinger (University of New Mexico), and Frank Jenkins, for many enlightening discussions, Dr. Herb Kirst (Eli Lilly and Co.), Larry Creemer (Eli Lilly and Co.) and Dr. Jon Mynderse (Eli Lilly and Co.) for providing some of the compounds, Thomas Worden and Dr. Laura Karr for providing some of the biological data. This research was supported by Dow AgroSciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas C. Sparks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sparks, T.C., Crouse, G.D., Dripps, J.E. et al. Neural network-based QSAR and insecticide discovery: spinetoram. J Comput Aided Mol Des 22, 393–401 (2008). https://doi.org/10.1007/s10822-008-9205-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-008-9205-8

Keywords

Navigation